基于统计小波的自适应参数估计正态分布尺度混合图像去噪

Mansoore Saeedzarandi, Hossien Nezamabadi-pour, S. Saryazdi
{"title":"基于统计小波的自适应参数估计正态分布尺度混合图像去噪","authors":"Mansoore Saeedzarandi, Hossien Nezamabadi-pour, S. Saryazdi","doi":"10.22044/JADM.2020.7797.1920","DOIUrl":null,"url":null,"abstract":"Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wavelet based image denoising, selecting a proper model for wavelet coefficients is very important. In this paper, we model wavelet coefficients in each sub-band by heavy-tail distributions that are from scale mixture of normal distribution family. The parameters of distributions are estimated adaptively to model the correlation between the coefficient amplitudes, so the intra-scale dependency of wavelet coefficients is also considered. The denoising results confirm the effectiveness of the proposed method.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":"8 1","pages":"289-301"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation\",\"authors\":\"Mansoore Saeedzarandi, Hossien Nezamabadi-pour, S. Saryazdi\",\"doi\":\"10.22044/JADM.2020.7797.1920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wavelet based image denoising, selecting a proper model for wavelet coefficients is very important. In this paper, we model wavelet coefficients in each sub-band by heavy-tail distributions that are from scale mixture of normal distribution family. The parameters of distributions are estimated adaptively to model the correlation between the coefficient amplitudes, so the intra-scale dependency of wavelet coefficients is also considered. The denoising results confirm the effectiveness of the proposed method.\",\"PeriodicalId\":32592,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Data Mining\",\"volume\":\"8 1\",\"pages\":\"289-301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JADM.2020.7797.1920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2020.7797.1920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从图像中去除噪声是数字图像处理中的一个具有挑战性的问题。本文提出了一种基于最大后验密度函数估计器的图像去噪方法,该方法由于其能量压缩特性而在小波域中实现。MAP估计器的性能取决于所提出的无噪声小波系数模型。因此,在基于小波的图像去噪中,选择合适的小波系数模型是非常重要的。本文利用正态分布族尺度混合的重尾分布对每个子带的小波系数进行建模。自适应地估计分布的参数以对系数幅度之间的相关性进行建模,因此还考虑了小波系数的尺度内相关性。去噪结果证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wavelet based image denoising, selecting a proper model for wavelet coefficients is very important. In this paper, we model wavelet coefficients in each sub-band by heavy-tail distributions that are from scale mixture of normal distribution family. The parameters of distributions are estimated adaptively to model the correlation between the coefficient amplitudes, so the intra-scale dependency of wavelet coefficients is also considered. The denoising results confirm the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信