Laurent Belcour, T. Deliot, Wilhem Barbier, C. Soler
{"title":"预计算辐射传输的数据驱动范例","authors":"Laurent Belcour, T. Deliot, Wilhem Barbier, C. Soler","doi":"10.1145/3543864","DOIUrl":null,"url":null,"abstract":"In this work, we explore a change of paradigm to build Precomputed Radiance Transfer (PRT) methods in a data-driven way. This paradigm shift allows us to alleviate the difficulties of building traditional PRT methods such as defining a reconstruction basis, coding a dedicated path tracer to compute a transfer function, etc. Our objective is to pave the way for Machine Learned methods by providing a simple baseline algorithm. More specifically, we demonstrate real-time rendering of indirect illumination in hair and surfaces from a few measurements of direct lighting. We build our baseline from pairs of direct and indirect illumination renderings using only standard tools such as Singular Value Decomposition (SVD) to extract both the reconstruction basis and transfer function.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":" ","pages":"1 - 15"},"PeriodicalIF":2.3000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Data-Driven Paradigm for Precomputed Radiance Transfer\",\"authors\":\"Laurent Belcour, T. Deliot, Wilhem Barbier, C. Soler\",\"doi\":\"10.1145/3543864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we explore a change of paradigm to build Precomputed Radiance Transfer (PRT) methods in a data-driven way. This paradigm shift allows us to alleviate the difficulties of building traditional PRT methods such as defining a reconstruction basis, coding a dedicated path tracer to compute a transfer function, etc. Our objective is to pave the way for Machine Learned methods by providing a simple baseline algorithm. More specifically, we demonstrate real-time rendering of indirect illumination in hair and surfaces from a few measurements of direct lighting. We build our baseline from pairs of direct and indirect illumination renderings using only standard tools such as Singular Value Decomposition (SVD) to extract both the reconstruction basis and transfer function.\",\"PeriodicalId\":74536,\"journal\":{\"name\":\"Proceedings of the ACM on computer graphics and interactive techniques\",\"volume\":\" \",\"pages\":\"1 - 15\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A Data-Driven Paradigm for Precomputed Radiance Transfer
In this work, we explore a change of paradigm to build Precomputed Radiance Transfer (PRT) methods in a data-driven way. This paradigm shift allows us to alleviate the difficulties of building traditional PRT methods such as defining a reconstruction basis, coding a dedicated path tracer to compute a transfer function, etc. Our objective is to pave the way for Machine Learned methods by providing a simple baseline algorithm. More specifically, we demonstrate real-time rendering of indirect illumination in hair and surfaces from a few measurements of direct lighting. We build our baseline from pairs of direct and indirect illumination renderings using only standard tools such as Singular Value Decomposition (SVD) to extract both the reconstruction basis and transfer function.