两种活性炭对β-苯乙醇吸附和释放性能的比较分析

IF 1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
J. S. Zhang, Z. Fang, L. Wang, Z. Chen, Y. Zhou, M. Liang, S. J. Huang
{"title":"两种活性炭对β-苯乙醇吸附和释放性能的比较分析","authors":"J. S. Zhang, Z. Fang, L. Wang, Z. Chen, Y. Zhou, M. Liang, S. J. Huang","doi":"10.15251/djnb.2023.183.961","DOIUrl":null,"url":null,"abstract":"In order to understand the adsorption and release properties of β-phenylethanol on activated carbon produced from different carbon sources, coconut shell activated carbon (CAC) and petroleum coke activated carbon (PAC) were selected for the immobilization β-phenylethanol. The structure and morphology of CAC and PAC were characterized by SEM, BET and TGA analysis. And then the effect of carbon sources and pore structure on β-phenylethanol adsorption and release properties were investigated by kinetic model. The results showed that the microporosity ratios for CAC and PAC were 89.13% and 77.12%, respectively, and both types of activated carbon were dominated by micropore structure. The adsorption behavior of β-phenylethanol on the CAC and PAC was both controlled by the physical adsorption, and the equilibrium adsorption capacity of CAC (391.2 mg/g) was 45.50% of that of PAC (859.8mg/g). Quasi primary equation can be used to describe the adsorption of β-phenylethanol on both types of activated carbon, i.e., the external transport resistance plays a major role in the adsorption process. The results of thermogravimetric analysis showed that the thermal stability of β-phenylethanol was obviously improved after the immobilization into activated carbon, accompanied with a higher temperature intervals for the release process and a decreased release rate. And the thermal stability of CAC loaded with β-phenylethanol was higher than that of PAC. Furthermore, the sustained release of β-phenylethanol from CAC and PAC was more consistent with the Korsmeyer-Peppas model and was dominated by Fick diffusion. The release rates of β-phenylethanol were 27.34% and 57.57% for CAC and PAC, respectively, under 35 days of storage at room temperature. The higher micropore ratio and lower mean pore width of CAC were responsible for the good stability and sustained release properties of immobilized β-phenylethanol.","PeriodicalId":11233,"journal":{"name":"Digest Journal of Nanomaterials and Biostructures","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of adsorption and release properties of β-phenylethanol on two kinds of activated carbon\",\"authors\":\"J. S. Zhang, Z. Fang, L. Wang, Z. Chen, Y. Zhou, M. Liang, S. J. Huang\",\"doi\":\"10.15251/djnb.2023.183.961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to understand the adsorption and release properties of β-phenylethanol on activated carbon produced from different carbon sources, coconut shell activated carbon (CAC) and petroleum coke activated carbon (PAC) were selected for the immobilization β-phenylethanol. The structure and morphology of CAC and PAC were characterized by SEM, BET and TGA analysis. And then the effect of carbon sources and pore structure on β-phenylethanol adsorption and release properties were investigated by kinetic model. The results showed that the microporosity ratios for CAC and PAC were 89.13% and 77.12%, respectively, and both types of activated carbon were dominated by micropore structure. The adsorption behavior of β-phenylethanol on the CAC and PAC was both controlled by the physical adsorption, and the equilibrium adsorption capacity of CAC (391.2 mg/g) was 45.50% of that of PAC (859.8mg/g). Quasi primary equation can be used to describe the adsorption of β-phenylethanol on both types of activated carbon, i.e., the external transport resistance plays a major role in the adsorption process. The results of thermogravimetric analysis showed that the thermal stability of β-phenylethanol was obviously improved after the immobilization into activated carbon, accompanied with a higher temperature intervals for the release process and a decreased release rate. And the thermal stability of CAC loaded with β-phenylethanol was higher than that of PAC. Furthermore, the sustained release of β-phenylethanol from CAC and PAC was more consistent with the Korsmeyer-Peppas model and was dominated by Fick diffusion. The release rates of β-phenylethanol were 27.34% and 57.57% for CAC and PAC, respectively, under 35 days of storage at room temperature. The higher micropore ratio and lower mean pore width of CAC were responsible for the good stability and sustained release properties of immobilized β-phenylethanol.\",\"PeriodicalId\":11233,\"journal\":{\"name\":\"Digest Journal of Nanomaterials and Biostructures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest Journal of Nanomaterials and Biostructures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/djnb.2023.183.961\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest Journal of Nanomaterials and Biostructures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/djnb.2023.183.961","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了了解β-苯乙醇对不同碳源制备的活性炭的吸附和释放性能,选择椰壳活性炭(CAC)和石油焦活性炭(PAC)作为固定β-苯乙醇的材料。通过SEM、BET和TGA分析对CAC和PAC的结构和形态进行了表征。然后通过动力学模型考察了碳源和孔结构对β-苯乙醇吸附和释放性能的影响。结果表明:CAC和PAC的微孔率分别为89.13%和77.12%,两种活性炭均以微孔结构为主;β-苯乙醇对CAC和PAC的吸附行为均受物理吸附控制,CAC的平衡吸附量(391.2 mg/g)是PAC的平衡吸附量(859.8mg/g)的45.50%。β-苯乙醇在两种活性炭上的吸附均可用准一级方程来描述,即外输运阻力在吸附过程中起主要作用。热重分析结果表明,将β-苯乙醇固定在活性炭中后,β-苯乙醇的热稳定性明显提高,释放过程的温度间隔变长,释放速率降低。β-苯乙醇负载CAC的热稳定性高于PAC, β-苯乙醇在CAC和PAC中的缓释更符合Korsmeyer-Peppas模型,且以Fick扩散为主。CAC和PAC在室温下贮藏35 d, β-苯乙醇的释放率分别为27.34%和57.57%。CAC较高的微孔比和较低的平均孔径是固定化β-苯乙醇具有良好稳定性和缓释性能的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of adsorption and release properties of β-phenylethanol on two kinds of activated carbon
In order to understand the adsorption and release properties of β-phenylethanol on activated carbon produced from different carbon sources, coconut shell activated carbon (CAC) and petroleum coke activated carbon (PAC) were selected for the immobilization β-phenylethanol. The structure and morphology of CAC and PAC were characterized by SEM, BET and TGA analysis. And then the effect of carbon sources and pore structure on β-phenylethanol adsorption and release properties were investigated by kinetic model. The results showed that the microporosity ratios for CAC and PAC were 89.13% and 77.12%, respectively, and both types of activated carbon were dominated by micropore structure. The adsorption behavior of β-phenylethanol on the CAC and PAC was both controlled by the physical adsorption, and the equilibrium adsorption capacity of CAC (391.2 mg/g) was 45.50% of that of PAC (859.8mg/g). Quasi primary equation can be used to describe the adsorption of β-phenylethanol on both types of activated carbon, i.e., the external transport resistance plays a major role in the adsorption process. The results of thermogravimetric analysis showed that the thermal stability of β-phenylethanol was obviously improved after the immobilization into activated carbon, accompanied with a higher temperature intervals for the release process and a decreased release rate. And the thermal stability of CAC loaded with β-phenylethanol was higher than that of PAC. Furthermore, the sustained release of β-phenylethanol from CAC and PAC was more consistent with the Korsmeyer-Peppas model and was dominated by Fick diffusion. The release rates of β-phenylethanol were 27.34% and 57.57% for CAC and PAC, respectively, under 35 days of storage at room temperature. The higher micropore ratio and lower mean pore width of CAC were responsible for the good stability and sustained release properties of immobilized β-phenylethanol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digest Journal of Nanomaterials and Biostructures
Digest Journal of Nanomaterials and Biostructures 工程技术-材料科学:综合
CiteScore
1.50
自引率
22.20%
发文量
116
审稿时长
4.3 months
期刊介绍: Under the aegis of the Academy of Romanian Scientists Edited by: -Virtual Institute of Physics operated by Virtual Company of Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信