{"title":"利用随机曲面的水平集对北极融池的分形几何建模","authors":"B. Bowen, C. Strong, K. Golden","doi":"10.4171/JFG/58","DOIUrl":null,"url":null,"abstract":"During the late spring, most of the Arctic Ocean is covered by sea ice with a layer of snow on top. As the snow and sea ice begin to melt, water collects on the surface to form melt ponds. As melting progresses, sparse, disconnected ponds coalesce to form complex, self-similar structures which are connected over large length scales. The boundaries of the ponds undergo a transition in fractal dimension from 1 to about 2 around a critical length scale of 100 square meters, as found previously from area–perimeter data. Melt pond geometry depends strongly on sea ice and snow topography. Here we construct a rather simple model of melt pond boundaries as the intersection of a horizontal plane, representing the water level, with a random surface representing the topography. We show that an autoregressive class of anisotropic random Fourier surfaces provides topographies that yield the observed fractal dimension transition, with the ponds evolving and growing as the plane rises. The results are compared with a partial differential equation model of melt pond evolution that includes much of the physics of the system. Properties of the shift in fractal dimension, such as its amplitude, phase and rate, are shown to depend on the surface anisotropy and autocorrelation length scales in the models. Melting-driven differences between the two models are highlighted. Mathematics Subject Classification (2010). 51, 35, 42, 86.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JFG/58","citationCount":"12","resultStr":"{\"title\":\"Modeling the fractal geometry of Arctic melt ponds using the level sets of random surfaces\",\"authors\":\"B. Bowen, C. Strong, K. Golden\",\"doi\":\"10.4171/JFG/58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the late spring, most of the Arctic Ocean is covered by sea ice with a layer of snow on top. As the snow and sea ice begin to melt, water collects on the surface to form melt ponds. As melting progresses, sparse, disconnected ponds coalesce to form complex, self-similar structures which are connected over large length scales. The boundaries of the ponds undergo a transition in fractal dimension from 1 to about 2 around a critical length scale of 100 square meters, as found previously from area–perimeter data. Melt pond geometry depends strongly on sea ice and snow topography. Here we construct a rather simple model of melt pond boundaries as the intersection of a horizontal plane, representing the water level, with a random surface representing the topography. We show that an autoregressive class of anisotropic random Fourier surfaces provides topographies that yield the observed fractal dimension transition, with the ponds evolving and growing as the plane rises. The results are compared with a partial differential equation model of melt pond evolution that includes much of the physics of the system. Properties of the shift in fractal dimension, such as its amplitude, phase and rate, are shown to depend on the surface anisotropy and autocorrelation length scales in the models. Melting-driven differences between the two models are highlighted. Mathematics Subject Classification (2010). 51, 35, 42, 86.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JFG/58\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JFG/58\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/58","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling the fractal geometry of Arctic melt ponds using the level sets of random surfaces
During the late spring, most of the Arctic Ocean is covered by sea ice with a layer of snow on top. As the snow and sea ice begin to melt, water collects on the surface to form melt ponds. As melting progresses, sparse, disconnected ponds coalesce to form complex, self-similar structures which are connected over large length scales. The boundaries of the ponds undergo a transition in fractal dimension from 1 to about 2 around a critical length scale of 100 square meters, as found previously from area–perimeter data. Melt pond geometry depends strongly on sea ice and snow topography. Here we construct a rather simple model of melt pond boundaries as the intersection of a horizontal plane, representing the water level, with a random surface representing the topography. We show that an autoregressive class of anisotropic random Fourier surfaces provides topographies that yield the observed fractal dimension transition, with the ponds evolving and growing as the plane rises. The results are compared with a partial differential equation model of melt pond evolution that includes much of the physics of the system. Properties of the shift in fractal dimension, such as its amplitude, phase and rate, are shown to depend on the surface anisotropy and autocorrelation length scales in the models. Melting-driven differences between the two models are highlighted. Mathematics Subject Classification (2010). 51, 35, 42, 86.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.