在Margalef的启发下理解水库中温室气体的通量

IF 1.2 4区 环境科学与生态学 Q4 LIMNOLOGY
Limnetica Pub Date : 2023-05-25 DOI:10.23818/limn.42.22
Elizabeth León-Palmero
{"title":"在Margalef的启发下理解水库中温室气体的通量","authors":"Elizabeth León-Palmero","doi":"10.23818/limn.42.22","DOIUrl":null,"url":null,"abstract":"Reservoirs are significant sources of greenhouse gases (GHG), such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), to the atmosphere. These systems receive and metabolize a larger amount of organic and inorganic carbon and nitrogen from their watersheds than lakes, resulting in the production of CO2, CH4 and N2O. Despite their global relevance, there are still important uncertainties regarding the magnitude, variability and drivers of their emissions that undermine global estimates. Therefore, a comprehensive understanding of the origin of these emissions is required. Here, I investigate the fluxes of CO2, CH4 and N2O and their concentrations in the water column of twelve Mediterranean reservoirs during the stratification and mixing periods to discern the main pathways involved in their production and the spatial and seasonal variability among these gases and their emissions and radiative forcing. Finally, I provide a theorical framework to understand GHG emissions as a response of reservoirs to eutrophication and external forcing. I integrate Margalef’s ideas about how eutrophication perturbs the biogeochemistry of inland waters with the main findings of my previous work to analyze how the C, N and P inputs from reservoir watersheds modify the biogeochemical cycling of C, N, P and O, and determine the production and emission of CO2, CH4, and N2O. This perturbation effect is especially notable for CH4, and N2O emissions, which increase significantly in eutrophic waters, even exceeding the climate forcing of CO2. Therefore, emission of GHG should be seen as part of the reservoir response to the external forcing that displaces a fraction of the materials to the atmospheric boundary.","PeriodicalId":49906,"journal":{"name":"Limnetica","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the fluxes of greenhouse gases in reservoirs under the inspiration of Margalef\",\"authors\":\"Elizabeth León-Palmero\",\"doi\":\"10.23818/limn.42.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reservoirs are significant sources of greenhouse gases (GHG), such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), to the atmosphere. These systems receive and metabolize a larger amount of organic and inorganic carbon and nitrogen from their watersheds than lakes, resulting in the production of CO2, CH4 and N2O. Despite their global relevance, there are still important uncertainties regarding the magnitude, variability and drivers of their emissions that undermine global estimates. Therefore, a comprehensive understanding of the origin of these emissions is required. Here, I investigate the fluxes of CO2, CH4 and N2O and their concentrations in the water column of twelve Mediterranean reservoirs during the stratification and mixing periods to discern the main pathways involved in their production and the spatial and seasonal variability among these gases and their emissions and radiative forcing. Finally, I provide a theorical framework to understand GHG emissions as a response of reservoirs to eutrophication and external forcing. I integrate Margalef’s ideas about how eutrophication perturbs the biogeochemistry of inland waters with the main findings of my previous work to analyze how the C, N and P inputs from reservoir watersheds modify the biogeochemical cycling of C, N, P and O, and determine the production and emission of CO2, CH4, and N2O. This perturbation effect is especially notable for CH4, and N2O emissions, which increase significantly in eutrophic waters, even exceeding the climate forcing of CO2. Therefore, emission of GHG should be seen as part of the reservoir response to the external forcing that displaces a fraction of the materials to the atmospheric boundary.\",\"PeriodicalId\":49906,\"journal\":{\"name\":\"Limnetica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnetica\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.23818/limn.42.22\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnetica","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.23818/limn.42.22","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水库是大气中二氧化碳(CO2)、甲烷(CH4)和一氧化二氮(N2O)等温室气体的重要来源。与湖泊相比,这些系统从其流域接收和代谢更多的有机和无机碳和氮,从而产生CO2、CH4和N2O。尽管它们具有全球相关性,但其排放量的大小、可变性和驱动因素仍存在重要的不确定性,这些不确定性破坏了全球估计。因此,需要全面了解这些排放物的来源。在这里,我研究了12个地中海水库在分层和混合期水柱中CO2、CH4和N2O的通量及其浓度,以了解其产生的主要途径,以及这些气体及其排放和辐射强迫之间的空间和季节变化。最后,我提供了一个理论框架来理解温室气体排放是水库对富营养化和外力的反应。我将Margalef关于富营养化如何干扰内陆水域生物地球化学的观点与我之前工作的主要发现相结合,以分析水库流域的C、N和P输入如何改变C、N、P和O的生物地球化学循环,并确定CO2、CH4和N2O的产生和排放。这种扰动效应对CH4和N2O排放尤其显著,它们在富营养化水域显著增加,甚至超过了CO2的气候强迫。因此,GHG的排放应被视为水库对外力的响应的一部分,外力将一部分材料转移到大气边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the fluxes of greenhouse gases in reservoirs under the inspiration of Margalef
Reservoirs are significant sources of greenhouse gases (GHG), such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), to the atmosphere. These systems receive and metabolize a larger amount of organic and inorganic carbon and nitrogen from their watersheds than lakes, resulting in the production of CO2, CH4 and N2O. Despite their global relevance, there are still important uncertainties regarding the magnitude, variability and drivers of their emissions that undermine global estimates. Therefore, a comprehensive understanding of the origin of these emissions is required. Here, I investigate the fluxes of CO2, CH4 and N2O and their concentrations in the water column of twelve Mediterranean reservoirs during the stratification and mixing periods to discern the main pathways involved in their production and the spatial and seasonal variability among these gases and their emissions and radiative forcing. Finally, I provide a theorical framework to understand GHG emissions as a response of reservoirs to eutrophication and external forcing. I integrate Margalef’s ideas about how eutrophication perturbs the biogeochemistry of inland waters with the main findings of my previous work to analyze how the C, N and P inputs from reservoir watersheds modify the biogeochemical cycling of C, N, P and O, and determine the production and emission of CO2, CH4, and N2O. This perturbation effect is especially notable for CH4, and N2O emissions, which increase significantly in eutrophic waters, even exceeding the climate forcing of CO2. Therefore, emission of GHG should be seen as part of the reservoir response to the external forcing that displaces a fraction of the materials to the atmospheric boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Limnetica
Limnetica LIMNOLOGY-MARINE & FRESHWATER BIOLOGY
CiteScore
3.70
自引率
7.10%
发文量
26
审稿时长
>12 weeks
期刊介绍: Limnetica publishes original research articles on the ecology of inland waters. The scope of Limnetica includes the ecology of rivers, lakes, reservoirs, coastal lagoons and wetlands, as well as biogeochemistry, paleolimnology, development of new methodologies, taxonomy, biogeography and any aspect of theoretical and applied continental aquatic ecology such as management and conservation, impact assessment, ecotoxicology and pollution. Limnetica will accept for its publication scientific articles presenting advances in knowledge or technological development, as well as as papers derived from new practical approaches on the topics covered by the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信