Vahid Pourmostaghimi, M. Zadshakoyan, S. Khalilpourazary, M. Badamchizadeh
{"title":"基于粒子群优化和递归动态神经网络的硬车削多性能优化","authors":"Vahid Pourmostaghimi, M. Zadshakoyan, S. Khalilpourazary, M. Badamchizadeh","doi":"10.1017/S0890060422000087","DOIUrl":null,"url":null,"abstract":"Abstract In the present work, a new hybrid approach combining particle swarm optimization (PSO) algorithm with recurrent dynamic neural network (RDNN), which is described as PSO-RDNN algorithm, is proposed for multi-performance optimization of machining parameters in finish turning of hardened AISI D2. The suggested optimization problem is solved using the weighted sum technique. Process parameters including cutting speed and feed rate are optimized for minimizing operation cost, maximizing tool life, and producing parts with acceptable surface roughness. Based on experimental results, two neural network models were developed for predicting tool flank wear and surface roughness during the machining process. Based on trained neural networks and structured hybrid algorithm, optimum cutting parameters were obtained. The coefficient of determination for trained neural networks was calculated as R2 = 0.9893 and R2 = 0.9879 for predicted flank wear and surface roughness, respectively, which proves the efficiency of trained neural models in real industrial applications. Furthermore, the offered methodology returns a Pareto optimality graph, which represents optimized cutting variables for several various cutting conditions.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A hybrid particle swarm optimization and recurrent dynamic neural network for multi-performance optimization of hard turning operation\",\"authors\":\"Vahid Pourmostaghimi, M. Zadshakoyan, S. Khalilpourazary, M. Badamchizadeh\",\"doi\":\"10.1017/S0890060422000087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present work, a new hybrid approach combining particle swarm optimization (PSO) algorithm with recurrent dynamic neural network (RDNN), which is described as PSO-RDNN algorithm, is proposed for multi-performance optimization of machining parameters in finish turning of hardened AISI D2. The suggested optimization problem is solved using the weighted sum technique. Process parameters including cutting speed and feed rate are optimized for minimizing operation cost, maximizing tool life, and producing parts with acceptable surface roughness. Based on experimental results, two neural network models were developed for predicting tool flank wear and surface roughness during the machining process. Based on trained neural networks and structured hybrid algorithm, optimum cutting parameters were obtained. The coefficient of determination for trained neural networks was calculated as R2 = 0.9893 and R2 = 0.9879 for predicted flank wear and surface roughness, respectively, which proves the efficiency of trained neural models in real industrial applications. Furthermore, the offered methodology returns a Pareto optimality graph, which represents optimized cutting variables for several various cutting conditions.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0890060422000087\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060422000087","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A hybrid particle swarm optimization and recurrent dynamic neural network for multi-performance optimization of hard turning operation
Abstract In the present work, a new hybrid approach combining particle swarm optimization (PSO) algorithm with recurrent dynamic neural network (RDNN), which is described as PSO-RDNN algorithm, is proposed for multi-performance optimization of machining parameters in finish turning of hardened AISI D2. The suggested optimization problem is solved using the weighted sum technique. Process parameters including cutting speed and feed rate are optimized for minimizing operation cost, maximizing tool life, and producing parts with acceptable surface roughness. Based on experimental results, two neural network models were developed for predicting tool flank wear and surface roughness during the machining process. Based on trained neural networks and structured hybrid algorithm, optimum cutting parameters were obtained. The coefficient of determination for trained neural networks was calculated as R2 = 0.9893 and R2 = 0.9879 for predicted flank wear and surface roughness, respectively, which proves the efficiency of trained neural models in real industrial applications. Furthermore, the offered methodology returns a Pareto optimality graph, which represents optimized cutting variables for several various cutting conditions.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.