P. Szulc, Bogumiła Nowak, M. Hassan, D. Lechniak, S. Ślusarczyk, J. Bocianowski, M. Szumacher-Strabel, A. Patra, A. Cieślak
{"title":"泡桐叶青贮在羔羊日粮中改善瘤胃发酵和脂肪酸含量的潜力——一项体外研究","authors":"P. Szulc, Bogumiła Nowak, M. Hassan, D. Lechniak, S. Ślusarczyk, J. Bocianowski, M. Szumacher-Strabel, A. Patra, A. Cieślak","doi":"10.2478/aoas-2023-0065","DOIUrl":null,"url":null,"abstract":"Abstract Environmental impact, quality, and quantity of food products of ruminant origin (especially beef and mutton) are considered major challenges in meeting the nutritional requirements of the growing human population worldwide. Therefore, we conducted this in vitro study to explore the potential of Paulownia leaves silage (PLS) to reduce the environmental impact of feedlot lamb production and improve ruminal fatty acids (FAs) profile by influencing ruminal biohydrogenation. In the present study, Paulownia leaves silage (PLS) and alfalfa silage (AAS) were mixed in a proportion of 1:0 (Control, PLS 0%), 0.75:0.25 (PLS 25%), 0.5:0.5 (PLS 50%), 0.25:0.75 (PLS 75%) and 0:1 (PLS 100%) on dry matter (DM) basis in the lamb diet. The experimental findings demonstrated that 100% replacement of AAS with PLS in the lamb diet significantly improved the ruminal fermentation by increasing the in vitro DM degradability (P<0.01), total volatile fatty acid (P<0.01), and propionate production (P<0.01) while reducing the acetate: propionate (A/P) ratio (P<0.01) and CH4 concentration (mM; L and Q P<0.05) and CH4, mM/g DM (L and Q P<0.05). Meanwhile, 100% PLS inclusion in the diet increased the total monounsaturated fatty acids (P<0.05), total unsaturated fatty acids (P<0.01) and total n-3 fatty acids (P<0.05) particularly alpha-linolenic acid (ALA; C18:3 n-3; P<0.05) in the rumen fluid after incubation. Moreover, the total saturated fatty acids concentration was reduced (P<0.01). These findings suggested that PLS could be a climate-friendly and sustainable alternative to AAS in the lamb feedlot diet for quality meat production.","PeriodicalId":8235,"journal":{"name":"Annals of Animal Science","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential of Paulownia leaves silage in lamb diet to improve ruminal fermentation and fatty acid profile – an in vitro study\",\"authors\":\"P. Szulc, Bogumiła Nowak, M. Hassan, D. Lechniak, S. Ślusarczyk, J. Bocianowski, M. Szumacher-Strabel, A. Patra, A. Cieślak\",\"doi\":\"10.2478/aoas-2023-0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Environmental impact, quality, and quantity of food products of ruminant origin (especially beef and mutton) are considered major challenges in meeting the nutritional requirements of the growing human population worldwide. Therefore, we conducted this in vitro study to explore the potential of Paulownia leaves silage (PLS) to reduce the environmental impact of feedlot lamb production and improve ruminal fatty acids (FAs) profile by influencing ruminal biohydrogenation. In the present study, Paulownia leaves silage (PLS) and alfalfa silage (AAS) were mixed in a proportion of 1:0 (Control, PLS 0%), 0.75:0.25 (PLS 25%), 0.5:0.5 (PLS 50%), 0.25:0.75 (PLS 75%) and 0:1 (PLS 100%) on dry matter (DM) basis in the lamb diet. The experimental findings demonstrated that 100% replacement of AAS with PLS in the lamb diet significantly improved the ruminal fermentation by increasing the in vitro DM degradability (P<0.01), total volatile fatty acid (P<0.01), and propionate production (P<0.01) while reducing the acetate: propionate (A/P) ratio (P<0.01) and CH4 concentration (mM; L and Q P<0.05) and CH4, mM/g DM (L and Q P<0.05). Meanwhile, 100% PLS inclusion in the diet increased the total monounsaturated fatty acids (P<0.05), total unsaturated fatty acids (P<0.01) and total n-3 fatty acids (P<0.05) particularly alpha-linolenic acid (ALA; C18:3 n-3; P<0.05) in the rumen fluid after incubation. Moreover, the total saturated fatty acids concentration was reduced (P<0.01). These findings suggested that PLS could be a climate-friendly and sustainable alternative to AAS in the lamb feedlot diet for quality meat production.\",\"PeriodicalId\":8235,\"journal\":{\"name\":\"Annals of Animal Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Animal Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2478/aoas-2023-0065\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Animal Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2478/aoas-2023-0065","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Potential of Paulownia leaves silage in lamb diet to improve ruminal fermentation and fatty acid profile – an in vitro study
Abstract Environmental impact, quality, and quantity of food products of ruminant origin (especially beef and mutton) are considered major challenges in meeting the nutritional requirements of the growing human population worldwide. Therefore, we conducted this in vitro study to explore the potential of Paulownia leaves silage (PLS) to reduce the environmental impact of feedlot lamb production and improve ruminal fatty acids (FAs) profile by influencing ruminal biohydrogenation. In the present study, Paulownia leaves silage (PLS) and alfalfa silage (AAS) were mixed in a proportion of 1:0 (Control, PLS 0%), 0.75:0.25 (PLS 25%), 0.5:0.5 (PLS 50%), 0.25:0.75 (PLS 75%) and 0:1 (PLS 100%) on dry matter (DM) basis in the lamb diet. The experimental findings demonstrated that 100% replacement of AAS with PLS in the lamb diet significantly improved the ruminal fermentation by increasing the in vitro DM degradability (P<0.01), total volatile fatty acid (P<0.01), and propionate production (P<0.01) while reducing the acetate: propionate (A/P) ratio (P<0.01) and CH4 concentration (mM; L and Q P<0.05) and CH4, mM/g DM (L and Q P<0.05). Meanwhile, 100% PLS inclusion in the diet increased the total monounsaturated fatty acids (P<0.05), total unsaturated fatty acids (P<0.01) and total n-3 fatty acids (P<0.05) particularly alpha-linolenic acid (ALA; C18:3 n-3; P<0.05) in the rumen fluid after incubation. Moreover, the total saturated fatty acids concentration was reduced (P<0.01). These findings suggested that PLS could be a climate-friendly and sustainable alternative to AAS in the lamb feedlot diet for quality meat production.
期刊介绍:
Annals of Animal Science accepts original papers and reviews from the different topics of animal science: genetic and farm animal breeding, the biology, physiology and reproduction of animals, animal nutrition and feedstuffs, environment, hygiene and animal production technology, quality of animal origin products, economics and the organization of animal production.