{"title":"非齐次Schrödinger-Poisson系统的正解","authors":"Jing Zhang, Rui Niu, Xiumei Han","doi":"10.1515/anona-2022-0238","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we consider the following Schrödinger-Poisson system: − Δ u + u + k ( x ) ϕ ( x ) u = f ( x ) ∣ u ∣ p − 1 u + g ( x ) , x ∈ R 3 , − Δ ϕ = k ( x ) u 2 , x ∈ R 3 , \\left\\{\\begin{array}{ll}-\\Delta u+u+k\\left(x)\\phi \\left(x)u=f\\left(x)| u{| }^{p-1}u+g\\left(x),& x\\in {{\\mathbb{R}}}^{3},\\\\ -\\Delta \\phi =k\\left(x){u}^{2},& x\\in {{\\mathbb{R}}}^{3},\\end{array}\\right. with p ∈ ( 3 , 5 ) p\\in \\left(3,5) . Under suitable assumptions on potentials f ( x ) f\\left(x) , g ( x ) g\\left(x) and k ( x ) k\\left(x) , then at least four positive solutions for the above system can be obtained for sufficiently small ‖ g ‖ H − 1 ( R 3 ) \\Vert g{\\Vert }_{{H}^{-1}\\left({{\\mathbb{R}}}^{3})} by taking advantage of variational methods and Lusternik-Schnirelman category.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1201 - 1222"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Positive solutions for a nonhomogeneous Schrödinger-Poisson system\",\"authors\":\"Jing Zhang, Rui Niu, Xiumei Han\",\"doi\":\"10.1515/anona-2022-0238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we consider the following Schrödinger-Poisson system: − Δ u + u + k ( x ) ϕ ( x ) u = f ( x ) ∣ u ∣ p − 1 u + g ( x ) , x ∈ R 3 , − Δ ϕ = k ( x ) u 2 , x ∈ R 3 , \\\\left\\\\{\\\\begin{array}{ll}-\\\\Delta u+u+k\\\\left(x)\\\\phi \\\\left(x)u=f\\\\left(x)| u{| }^{p-1}u+g\\\\left(x),& x\\\\in {{\\\\mathbb{R}}}^{3},\\\\\\\\ -\\\\Delta \\\\phi =k\\\\left(x){u}^{2},& x\\\\in {{\\\\mathbb{R}}}^{3},\\\\end{array}\\\\right. with p ∈ ( 3 , 5 ) p\\\\in \\\\left(3,5) . Under suitable assumptions on potentials f ( x ) f\\\\left(x) , g ( x ) g\\\\left(x) and k ( x ) k\\\\left(x) , then at least four positive solutions for the above system can be obtained for sufficiently small ‖ g ‖ H − 1 ( R 3 ) \\\\Vert g{\\\\Vert }_{{H}^{-1}\\\\left({{\\\\mathbb{R}}}^{3})} by taking advantage of variational methods and Lusternik-Schnirelman category.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\"11 1\",\"pages\":\"1201 - 1222\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0238\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0238","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Positive solutions for a nonhomogeneous Schrödinger-Poisson system
Abstract In this article, we consider the following Schrödinger-Poisson system: − Δ u + u + k ( x ) ϕ ( x ) u = f ( x ) ∣ u ∣ p − 1 u + g ( x ) , x ∈ R 3 , − Δ ϕ = k ( x ) u 2 , x ∈ R 3 , \left\{\begin{array}{ll}-\Delta u+u+k\left(x)\phi \left(x)u=f\left(x)| u{| }^{p-1}u+g\left(x),& x\in {{\mathbb{R}}}^{3},\\ -\Delta \phi =k\left(x){u}^{2},& x\in {{\mathbb{R}}}^{3},\end{array}\right. with p ∈ ( 3 , 5 ) p\in \left(3,5) . Under suitable assumptions on potentials f ( x ) f\left(x) , g ( x ) g\left(x) and k ( x ) k\left(x) , then at least four positive solutions for the above system can be obtained for sufficiently small ‖ g ‖ H − 1 ( R 3 ) \Vert g{\Vert }_{{H}^{-1}\left({{\mathbb{R}}}^{3})} by taking advantage of variational methods and Lusternik-Schnirelman category.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.