{"title":"基于模糊逻辑的混合学习粒子群算法在情感分类中的应用","authors":"Jiyuan Wang, Kaiyue Wang, X. Yan, Chanjuan Wang","doi":"10.4018/ijcini.314782","DOIUrl":null,"url":null,"abstract":"Methods based on deep learning have great utility in the current field of sentiment classification. To better optimize the setting of hyper-parameters in deep learning, a hybrid learning particle swarm optimization with fuzzy logic (HLPSO-FL) is proposed in this paper. Hybrid learning strategies are divided into mainstream learning strategies and random learning strategies. The mainstream learning strategy is to define the mainstream particles in the cluster and build a scale-free network through the mainstream particles. The random learning strategy makes full use of historical information and speeds up the convergence of the algorithm. Furthermore, fuzzy logic is used to control algorithm parameters to balance algorithm exploration and exploration performance. HLPSO-FL has completed comparison experiments on benchmark functions and real sentiment classification problems respectively. The experimental results show that HLPSO-FL can effectively complete the hyperparameter optimization of sentiment classification problem in deep learning and has strong convergence.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hybrid Learning Particle Swarm Optimization With Fuzzy Logic for Sentiment Classification Problems\",\"authors\":\"Jiyuan Wang, Kaiyue Wang, X. Yan, Chanjuan Wang\",\"doi\":\"10.4018/ijcini.314782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods based on deep learning have great utility in the current field of sentiment classification. To better optimize the setting of hyper-parameters in deep learning, a hybrid learning particle swarm optimization with fuzzy logic (HLPSO-FL) is proposed in this paper. Hybrid learning strategies are divided into mainstream learning strategies and random learning strategies. The mainstream learning strategy is to define the mainstream particles in the cluster and build a scale-free network through the mainstream particles. The random learning strategy makes full use of historical information and speeds up the convergence of the algorithm. Furthermore, fuzzy logic is used to control algorithm parameters to balance algorithm exploration and exploration performance. HLPSO-FL has completed comparison experiments on benchmark functions and real sentiment classification problems respectively. The experimental results show that HLPSO-FL can effectively complete the hyperparameter optimization of sentiment classification problem in deep learning and has strong convergence.\",\"PeriodicalId\":43637,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.314782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.314782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Hybrid Learning Particle Swarm Optimization With Fuzzy Logic for Sentiment Classification Problems
Methods based on deep learning have great utility in the current field of sentiment classification. To better optimize the setting of hyper-parameters in deep learning, a hybrid learning particle swarm optimization with fuzzy logic (HLPSO-FL) is proposed in this paper. Hybrid learning strategies are divided into mainstream learning strategies and random learning strategies. The mainstream learning strategy is to define the mainstream particles in the cluster and build a scale-free network through the mainstream particles. The random learning strategy makes full use of historical information and speeds up the convergence of the algorithm. Furthermore, fuzzy logic is used to control algorithm parameters to balance algorithm exploration and exploration performance. HLPSO-FL has completed comparison experiments on benchmark functions and real sentiment classification problems respectively. The experimental results show that HLPSO-FL can effectively complete the hyperparameter optimization of sentiment classification problem in deep learning and has strong convergence.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.