在雅可比矩阵对的牛顿多面体上

IF 0.8 3区 数学 Q2 MATHEMATICS
L. Makar-Limanov
{"title":"在雅可比矩阵对的牛顿多面体上","authors":"L. Makar-Limanov","doi":"10.1070/IM9067","DOIUrl":null,"url":null,"abstract":"We introduce and describe the Newton polyhedron related to a “minimal” counterexample to the Jacobian conjecture. This description allows us to obtain a sharper estimate for the geometric degree of the polynomial mapping given by a Jacobian pair and to give a new proof in the case of the Abhyankar’s two characteristic pairs.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"85 1","pages":"457 - 467"},"PeriodicalIF":0.8000,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Newton polyhedron of a Jacobian pair\",\"authors\":\"L. Makar-Limanov\",\"doi\":\"10.1070/IM9067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and describe the Newton polyhedron related to a “minimal” counterexample to the Jacobian conjecture. This description allows us to obtain a sharper estimate for the geometric degree of the polynomial mapping given by a Jacobian pair and to give a new proof in the case of the Abhyankar’s two characteristic pairs.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"85 1\",\"pages\":\"457 - 467\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/IM9067\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/IM9067","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍并描述了与雅可比猜想的“最小”反例相关的牛顿多面体。这种描述使我们对雅可比对所给出的多项式映射的几何度有了更清晰的估计,并对Abhyankar的两个特征对给出了新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Newton polyhedron of a Jacobian pair
We introduce and describe the Newton polyhedron related to a “minimal” counterexample to the Jacobian conjecture. This description allows us to obtain a sharper estimate for the geometric degree of the polynomial mapping given by a Jacobian pair and to give a new proof in the case of the Abhyankar’s two characteristic pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信