优化神经内科住院患者文件:一种新型出院文件电子病历工具的试点研究

IF 0.9 Q4 CLINICAL NEUROLOGY
Neurohospitalist Pub Date : 2024-01-01 Epub Date: 2023-08-04 DOI:10.1177/19418744231194680
Katherine A Fu, Russell Kerbel, Rylan J Obrien, Joshua S Li, Nicholas J Jackson, Inna Keselman, Melissa Reider-Demer
{"title":"优化神经内科住院患者文件:一种新型出院文件电子病历工具的试点研究","authors":"Katherine A Fu, Russell Kerbel, Rylan J Obrien, Joshua S Li, Nicholas J Jackson, Inna Keselman, Melissa Reider-Demer","doi":"10.1177/19418744231194680","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Clinical documentation of patient acuity is a major determinant of payer reimbursement. This project aimed to improve case mix index (CMI) by incorporating a novel electronic health record (EHR) discharge documentation tool into the inpatient general neurology service at the University of California, Los Angeles (UCLA) Medical Center.</p><p><strong>Methods: </strong>We used data from Vizient AMC Hospital: Risk Model Summary for Clinical Data Base (CBD) 2017 to create a discharge diagnosis documentation tool consisting of dropdown menus to better capture relevant secondary diagnoses and comorbidities. After implementation of this tool, we compared pre- (July 2017-June 2019) and post-intervention (July 2019-June 2021) time periods on mean expected length of stay (LOS) and mean CMI with two sample T-tests and the percentage of encounters classified as having Major Complications/Comorbidities (MCC), with Complication/Comorbidity (CC), and without CC/MCC with tests of proportions.</p><p><strong>Results: </strong>Mean CMI increased significantly from 1.2 pre-intervention to 1.4 post-intervention implementation (<i>P</i> < .01). There was a pattern of increased MCC percentages for \"Bacterial infections,\" \"Other Disorders of Nervous System\", \"Multiple Sclerosis,\" and \"Nervous System Neoplasms\" diagnosis related groups post-intervention.</p><p><strong>Conclusions: </strong>This pilot study describes the creation of an innovative EHR discharge diagnosis documentation tool in collaboration with neurology healthcare providers, the clinical documentation improvement team, and neuro-informaticists. This novel discharge diagnosis documentation tool demonstrates promise in increasing CMI, shifting diagnosis related groups to a greater proportion of those with MCC, and improving the quality of clinical documentation.</p>","PeriodicalId":46355,"journal":{"name":"Neurohospitalist","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790608/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing Neurology Inpatient Documentation: A Pilot Study of a Novel Discharge Documentation EHR Tool.\",\"authors\":\"Katherine A Fu, Russell Kerbel, Rylan J Obrien, Joshua S Li, Nicholas J Jackson, Inna Keselman, Melissa Reider-Demer\",\"doi\":\"10.1177/19418744231194680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Clinical documentation of patient acuity is a major determinant of payer reimbursement. This project aimed to improve case mix index (CMI) by incorporating a novel electronic health record (EHR) discharge documentation tool into the inpatient general neurology service at the University of California, Los Angeles (UCLA) Medical Center.</p><p><strong>Methods: </strong>We used data from Vizient AMC Hospital: Risk Model Summary for Clinical Data Base (CBD) 2017 to create a discharge diagnosis documentation tool consisting of dropdown menus to better capture relevant secondary diagnoses and comorbidities. After implementation of this tool, we compared pre- (July 2017-June 2019) and post-intervention (July 2019-June 2021) time periods on mean expected length of stay (LOS) and mean CMI with two sample T-tests and the percentage of encounters classified as having Major Complications/Comorbidities (MCC), with Complication/Comorbidity (CC), and without CC/MCC with tests of proportions.</p><p><strong>Results: </strong>Mean CMI increased significantly from 1.2 pre-intervention to 1.4 post-intervention implementation (<i>P</i> < .01). There was a pattern of increased MCC percentages for \\\"Bacterial infections,\\\" \\\"Other Disorders of Nervous System\\\", \\\"Multiple Sclerosis,\\\" and \\\"Nervous System Neoplasms\\\" diagnosis related groups post-intervention.</p><p><strong>Conclusions: </strong>This pilot study describes the creation of an innovative EHR discharge diagnosis documentation tool in collaboration with neurology healthcare providers, the clinical documentation improvement team, and neuro-informaticists. This novel discharge diagnosis documentation tool demonstrates promise in increasing CMI, shifting diagnosis related groups to a greater proportion of those with MCC, and improving the quality of clinical documentation.</p>\",\"PeriodicalId\":46355,\"journal\":{\"name\":\"Neurohospitalist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790608/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurohospitalist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/19418744231194680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurohospitalist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19418744231194680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

患者视力的临床文件是付款人报销的主要决定因素。该项目旨在通过将一种新的电子健康记录(EHR)出院文档工具纳入加州大学洛杉矶分校(UCLA)医疗中心的住院普通神经病学服务中,来改善病例组合指数(CMI)。我们使用Vizient AMC医院的数据:2017年临床数据库风险模型摘要(CBD)创建了一个出院诊断文档工具,该工具由下拉菜单组成,以更好地捕捉相关的二次诊断和合并症。在实施该工具后,我们将干预前(2017年7月-2019年6月)和干预后(2019年7月-2021年6月。平均CMI从干预前的1.2显著增加到干预后的1.4(P<0.01)。干预后,“细菌感染”、“其他神经系统疾病”、“多发性硬化症”和“神经系统肿瘤”诊断相关组的MCC百分比呈增加模式。这项试点研究描述了与神经病学医疗保健提供者、临床文档改进团队和神经信息学家合作创建一种创新的EHR出院诊断文档工具。这种新型出院诊断文件工具在增加CMI、将诊断相关人群转移到更大比例的MCC患者以及提高临床文件质量方面显示出了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Neurology Inpatient Documentation: A Pilot Study of a Novel Discharge Documentation EHR Tool.

Background and purpose: Clinical documentation of patient acuity is a major determinant of payer reimbursement. This project aimed to improve case mix index (CMI) by incorporating a novel electronic health record (EHR) discharge documentation tool into the inpatient general neurology service at the University of California, Los Angeles (UCLA) Medical Center.

Methods: We used data from Vizient AMC Hospital: Risk Model Summary for Clinical Data Base (CBD) 2017 to create a discharge diagnosis documentation tool consisting of dropdown menus to better capture relevant secondary diagnoses and comorbidities. After implementation of this tool, we compared pre- (July 2017-June 2019) and post-intervention (July 2019-June 2021) time periods on mean expected length of stay (LOS) and mean CMI with two sample T-tests and the percentage of encounters classified as having Major Complications/Comorbidities (MCC), with Complication/Comorbidity (CC), and without CC/MCC with tests of proportions.

Results: Mean CMI increased significantly from 1.2 pre-intervention to 1.4 post-intervention implementation (P < .01). There was a pattern of increased MCC percentages for "Bacterial infections," "Other Disorders of Nervous System", "Multiple Sclerosis," and "Nervous System Neoplasms" diagnosis related groups post-intervention.

Conclusions: This pilot study describes the creation of an innovative EHR discharge diagnosis documentation tool in collaboration with neurology healthcare providers, the clinical documentation improvement team, and neuro-informaticists. This novel discharge diagnosis documentation tool demonstrates promise in increasing CMI, shifting diagnosis related groups to a greater proportion of those with MCC, and improving the quality of clinical documentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurohospitalist
Neurohospitalist CLINICAL NEUROLOGY-
CiteScore
1.60
自引率
0.00%
发文量
108
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信