{"title":"对称矩阵恰好具有一个正特征值的充分条件","authors":"Doaa Al-Saafin, J. Garloff","doi":"10.1515/spma-2020-0009","DOIUrl":null,"url":null,"abstract":"Abstract Let A = [aij] be a real symmetric matrix. If f : (0, ∞) → [0, ∞) is a Bernstein function, a sufficient condition for the matrix [f (aij)] to have only one positive eigenvalue is presented. By using this result, new results for a symmetric matrix with exactly one positive eigenvalue, e.g., properties of its Hadamard powers, are derived.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"8 1","pages":"98 - 103"},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0009","citationCount":"0","resultStr":"{\"title\":\"Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue\",\"authors\":\"Doaa Al-Saafin, J. Garloff\",\"doi\":\"10.1515/spma-2020-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let A = [aij] be a real symmetric matrix. If f : (0, ∞) → [0, ∞) is a Bernstein function, a sufficient condition for the matrix [f (aij)] to have only one positive eigenvalue is presented. By using this result, new results for a symmetric matrix with exactly one positive eigenvalue, e.g., properties of its Hadamard powers, are derived.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"8 1\",\"pages\":\"98 - 103\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/spma-2020-0009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2020-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue
Abstract Let A = [aij] be a real symmetric matrix. If f : (0, ∞) → [0, ∞) is a Bernstein function, a sufficient condition for the matrix [f (aij)] to have only one positive eigenvalue is presented. By using this result, new results for a symmetric matrix with exactly one positive eigenvalue, e.g., properties of its Hadamard powers, are derived.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.