基于SE-Res2Net和多尺度空间光谱融合注意机制的高光谱图像分类

Q3 Computer Science
Qin Xu, Yulian Liang, Dongyue Wang, B. Luo
{"title":"基于SE-Res2Net和多尺度空间光谱融合注意机制的高光谱图像分类","authors":"Qin Xu, Yulian Liang, Dongyue Wang, B. Luo","doi":"10.3724/sp.j.1089.2021.18778","DOIUrl":null,"url":null,"abstract":"In order to extract more discriminative features for hyperspectral image and prevent the network from degrading caused by deepening, a novel multi-scale feature extraction module SE-Res2Net based on the new dimensional residual network (Res2Net) and squeeze and exception network (SENet), and a multi-scale spectral-spatial fusion attention module is developed for hyperspectral image classification. In order to overcome the degradation problem caused by network deepening, the SE-Res2Net module uses channel grouping to extract fine-grained multi-scale features of hyperspectral images, and gets multiple receptive fields of different granularity. Then, the channel optimization module is employed to quantify the importance of the feature maps at the channel level. In order to optimize the features from spatial and spectral dimensions simultaneously, a multi-scale spectral-spatial fusion attention module is designed to mine the relationship between different spatial positions and different spectral dimensions at different scales using 第 11 期 徐沁, 等: 基于 SE-Res2Net 与多尺度空谱融合注意力机制的高光谱图像分类 1727 asymmetric convolution, which can not only reduce the computation, but also effectively extract the discriminative spectral-spatial fusion features, and further improve the accuracy of hyperspectral image classification. Comparison experiments on three public datasets, Indian Pines, University of Pavia and Grss_dfc_2013 show that the proposed method has higher overall accuracy (OA), average accuracy (AA) and Kappa coefficient compared to other state-of-the-art deep networks.","PeriodicalId":52442,"journal":{"name":"计算机辅助设计与图形学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hyperspectral Image Classification Based on SE-Res2Net and Multi-Scale Spatial Spectral Fusion Attention Mechanism\",\"authors\":\"Qin Xu, Yulian Liang, Dongyue Wang, B. Luo\",\"doi\":\"10.3724/sp.j.1089.2021.18778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to extract more discriminative features for hyperspectral image and prevent the network from degrading caused by deepening, a novel multi-scale feature extraction module SE-Res2Net based on the new dimensional residual network (Res2Net) and squeeze and exception network (SENet), and a multi-scale spectral-spatial fusion attention module is developed for hyperspectral image classification. In order to overcome the degradation problem caused by network deepening, the SE-Res2Net module uses channel grouping to extract fine-grained multi-scale features of hyperspectral images, and gets multiple receptive fields of different granularity. Then, the channel optimization module is employed to quantify the importance of the feature maps at the channel level. In order to optimize the features from spatial and spectral dimensions simultaneously, a multi-scale spectral-spatial fusion attention module is designed to mine the relationship between different spatial positions and different spectral dimensions at different scales using 第 11 期 徐沁, 等: 基于 SE-Res2Net 与多尺度空谱融合注意力机制的高光谱图像分类 1727 asymmetric convolution, which can not only reduce the computation, but also effectively extract the discriminative spectral-spatial fusion features, and further improve the accuracy of hyperspectral image classification. Comparison experiments on three public datasets, Indian Pines, University of Pavia and Grss_dfc_2013 show that the proposed method has higher overall accuracy (OA), average accuracy (AA) and Kappa coefficient compared to other state-of-the-art deep networks.\",\"PeriodicalId\":52442,\"journal\":{\"name\":\"计算机辅助设计与图形学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算机辅助设计与图形学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/sp.j.1089.2021.18778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机辅助设计与图形学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/sp.j.1089.2021.18778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 6

摘要

为了对高光谱图像提取更多的判别特征,防止网络深度退化,基于新维残差网络(Res2Net)和挤压例外网络(SENet)开发了一种新的多尺度特征提取模块SE-Res2Net,以及用于高光谱图像分类的多尺度光谱-空间融合关注模块。为了克服网络深化带来的退化问题,SE-Res2Net模块采用通道分组的方法提取高光谱图像的细粒度多尺度特征,得到不同粒度的多个感受场。然后,利用通道优化模块对通道级特征映射的重要性进行量化。为了同时优化空间和光谱维度的特征,设计了多尺度光谱-空间融合关注模块,利用不同尺度下不同空间位置与不同光谱维度之间的关系,挖掘不同空间位置与不同光谱维度之间的关系。不对称卷积,不仅可以减少计算量,还可以有效提取判别光谱-空间融合特征,进一步提高高光谱图像分类的精度。在Indian Pines、University of Pavia和Grss_dfc_2013三个公开数据集上的对比实验表明,与其他最先进的深度网络相比,该方法具有更高的总体精度(OA)、平均精度(AA)和Kappa系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral Image Classification Based on SE-Res2Net and Multi-Scale Spatial Spectral Fusion Attention Mechanism
In order to extract more discriminative features for hyperspectral image and prevent the network from degrading caused by deepening, a novel multi-scale feature extraction module SE-Res2Net based on the new dimensional residual network (Res2Net) and squeeze and exception network (SENet), and a multi-scale spectral-spatial fusion attention module is developed for hyperspectral image classification. In order to overcome the degradation problem caused by network deepening, the SE-Res2Net module uses channel grouping to extract fine-grained multi-scale features of hyperspectral images, and gets multiple receptive fields of different granularity. Then, the channel optimization module is employed to quantify the importance of the feature maps at the channel level. In order to optimize the features from spatial and spectral dimensions simultaneously, a multi-scale spectral-spatial fusion attention module is designed to mine the relationship between different spatial positions and different spectral dimensions at different scales using 第 11 期 徐沁, 等: 基于 SE-Res2Net 与多尺度空谱融合注意力机制的高光谱图像分类 1727 asymmetric convolution, which can not only reduce the computation, but also effectively extract the discriminative spectral-spatial fusion features, and further improve the accuracy of hyperspectral image classification. Comparison experiments on three public datasets, Indian Pines, University of Pavia and Grss_dfc_2013 show that the proposed method has higher overall accuracy (OA), average accuracy (AA) and Kappa coefficient compared to other state-of-the-art deep networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
计算机辅助设计与图形学学报
计算机辅助设计与图形学学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6833
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信