具有相关无序的球形自旋玻璃模型的边缘

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Jean Barbier, M. S'aenz
{"title":"具有相关无序的球形自旋玻璃模型的边缘","authors":"Jean Barbier, M. S'aenz","doi":"10.1214/22-ecp489","DOIUrl":null,"url":null,"abstract":"In this paper we prove the weak convergence, in a high-temperature phase, of the finite marginals of the Gibbs measure associated to a symmetric spherical spin glass model with correlated couplings towards an explicit asymptotic decoupled measure. We also provide upper bounds for the rate of convergence in terms of the one of the energy per variable. Furthermore, we establish a concentration inequality for bounded functions under a higher temperature condition. These results are exemplified by analysing the asymptotic behaviour of the empirical mean of coordinate-wise functions of samples from the Gibbs measure of the model.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Marginals of a spherical spin glass model with correlated disorder\",\"authors\":\"Jean Barbier, M. S'aenz\",\"doi\":\"10.1214/22-ecp489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove the weak convergence, in a high-temperature phase, of the finite marginals of the Gibbs measure associated to a symmetric spherical spin glass model with correlated couplings towards an explicit asymptotic decoupled measure. We also provide upper bounds for the rate of convergence in terms of the one of the energy per variable. Furthermore, we establish a concentration inequality for bounded functions under a higher temperature condition. These results are exemplified by analysing the asymptotic behaviour of the empirical mean of coordinate-wise functions of samples from the Gibbs measure of the model.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ecp489\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ecp489","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

本文证明了具有相关耦合的对称球形自旋玻璃模型的Gibbs测度的有限边际在高温相下对显式渐近解耦测度的弱收敛性。我们也给出了收敛速度的上界用每个变量的能量来表示。进一步,我们建立了有界函数在高温条件下的浓度不等式。这些结果是通过分析从模型的吉布斯测度的样本的坐标明智的函数的经验平均值的渐近行为例证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Marginals of a spherical spin glass model with correlated disorder
In this paper we prove the weak convergence, in a high-temperature phase, of the finite marginals of the Gibbs measure associated to a symmetric spherical spin glass model with correlated couplings towards an explicit asymptotic decoupled measure. We also provide upper bounds for the rate of convergence in terms of the one of the energy per variable. Furthermore, we establish a concentration inequality for bounded functions under a higher temperature condition. These results are exemplified by analysing the asymptotic behaviour of the empirical mean of coordinate-wise functions of samples from the Gibbs measure of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信