{"title":"叶片多腔挤压器叶尖气热性能鲁棒性分析的创新框架","authors":"Ming Huang, Kai Zhang, Zhigang Li, Jun Li","doi":"10.2514/1.t6777","DOIUrl":null,"url":null,"abstract":"Gas turbines are subject to various geometric and operational uncertainties, which are often overlooked in conventional research. Therefore, conclusions derived from a deterministic approach may not accurately reflect the actual gas turbine operation. To address this issue, this paper presents an effective uncertainty quantification framework for evaluating the aerothermal performance robustness of the multicavity squealer tip. Moreover, a novel visualization method is developed to analyze the uncertainty flow and thermal fields. The findings suggest that conventional research tends to overestimate the aerodynamic performance of the multicavity squealer tip. The installation of ribs can exacerbate the chaotic tendency of the flowfield, leading to a significant reduction in the aerodynamic performance robustness of the squealer tip during actual operation. However, the heat transfer performance robustness of the multicavity squealer tip is substantially enhanced due to the inability of the flowfield uncertainty to transfer to the thermal field through the ribs. Furthermore, the study reveals high heat flux fluctuations in the region near the ribs root, which highlights the importance of considering thermal fatigue risks in the design of multicavity squealer tips.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Innovative Framework for Robustness Analysis of Blade Multicavity Squealer Tip Aerothermal Performance\",\"authors\":\"Ming Huang, Kai Zhang, Zhigang Li, Jun Li\",\"doi\":\"10.2514/1.t6777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gas turbines are subject to various geometric and operational uncertainties, which are often overlooked in conventional research. Therefore, conclusions derived from a deterministic approach may not accurately reflect the actual gas turbine operation. To address this issue, this paper presents an effective uncertainty quantification framework for evaluating the aerothermal performance robustness of the multicavity squealer tip. Moreover, a novel visualization method is developed to analyze the uncertainty flow and thermal fields. The findings suggest that conventional research tends to overestimate the aerodynamic performance of the multicavity squealer tip. The installation of ribs can exacerbate the chaotic tendency of the flowfield, leading to a significant reduction in the aerodynamic performance robustness of the squealer tip during actual operation. However, the heat transfer performance robustness of the multicavity squealer tip is substantially enhanced due to the inability of the flowfield uncertainty to transfer to the thermal field through the ribs. Furthermore, the study reveals high heat flux fluctuations in the region near the ribs root, which highlights the importance of considering thermal fatigue risks in the design of multicavity squealer tips.\",\"PeriodicalId\":17482,\"journal\":{\"name\":\"Journal of Thermophysics and Heat Transfer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermophysics and Heat Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t6777\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6777","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Innovative Framework for Robustness Analysis of Blade Multicavity Squealer Tip Aerothermal Performance
Gas turbines are subject to various geometric and operational uncertainties, which are often overlooked in conventional research. Therefore, conclusions derived from a deterministic approach may not accurately reflect the actual gas turbine operation. To address this issue, this paper presents an effective uncertainty quantification framework for evaluating the aerothermal performance robustness of the multicavity squealer tip. Moreover, a novel visualization method is developed to analyze the uncertainty flow and thermal fields. The findings suggest that conventional research tends to overestimate the aerodynamic performance of the multicavity squealer tip. The installation of ribs can exacerbate the chaotic tendency of the flowfield, leading to a significant reduction in the aerodynamic performance robustness of the squealer tip during actual operation. However, the heat transfer performance robustness of the multicavity squealer tip is substantially enhanced due to the inability of the flowfield uncertainty to transfer to the thermal field through the ribs. Furthermore, the study reveals high heat flux fluctuations in the region near the ribs root, which highlights the importance of considering thermal fatigue risks in the design of multicavity squealer tips.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.