埃及分数逼近与弱贪婪算法

Pub Date : 2023-06-03 DOI:10.1016/j.indag.2023.05.008
Hùng Việt Chu
{"title":"埃及分数逼近与弱贪婪算法","authors":"Hùng Việt Chu","doi":"10.1016/j.indag.2023.05.008","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>θ</mi><mo>⩽</mo><mn>1</mn></mrow></math></span>. A sequence of positive integers <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> is called a weak greedy approximation of <span><math><mi>θ</mi></math></span> if <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>θ</mi></mrow></math></span>. We introduce the weak greedy approximation algorithm (WGAA), which, for each <span><math><mi>θ</mi></math></span>, produces two sequences of positive integers <span><math><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> such that</p><p>(a) <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>θ</mi></mrow></math></span>;</p><p>(b) <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>&lt;</mo><mi>θ</mi><mo>−</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&lt;</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>1</mn></mrow></math></span>;</p><p>(c) there exists <span><math><mrow><mi>t</mi><mo>⩾</mo><mn>1</mn></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⩽</mo><mi>t</mi></mrow></math></span> infinitely often.</p><p>We then investigate when a given weak greedy approximation <span><math><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> can be produced by the WGAA. Furthermore, we show that for any non-decreasing <span><math><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> with <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⩾</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mi>∞</mi></mrow></math></span>, there exist <span><math><mi>θ</mi></math></span> and <span><math><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> such that (a) and (b) are satisfied; whether (c) is also satisfied depends on the sequence <span><math><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span>. Finally, we address the uniqueness of <span><math><mi>θ</mi></math></span> and <span><math><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> and apply our framework to specific sequences.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximation by Egyptian fractions and the weak greedy algorithm\",\"authors\":\"Hùng Việt Chu\",\"doi\":\"10.1016/j.indag.2023.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>θ</mi><mo>⩽</mo><mn>1</mn></mrow></math></span>. A sequence of positive integers <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> is called a weak greedy approximation of <span><math><mi>θ</mi></math></span> if <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>θ</mi></mrow></math></span>. We introduce the weak greedy approximation algorithm (WGAA), which, for each <span><math><mi>θ</mi></math></span>, produces two sequences of positive integers <span><math><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> such that</p><p>(a) <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>θ</mi></mrow></math></span>;</p><p>(b) <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>&lt;</mo><mi>θ</mi><mo>−</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&lt;</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>1</mn></mrow></math></span>;</p><p>(c) there exists <span><math><mrow><mi>t</mi><mo>⩾</mo><mn>1</mn></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⩽</mo><mi>t</mi></mrow></math></span> infinitely often.</p><p>We then investigate when a given weak greedy approximation <span><math><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> can be produced by the WGAA. Furthermore, we show that for any non-decreasing <span><math><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> with <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⩾</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mi>∞</mi></mrow></math></span>, there exist <span><math><mi>θ</mi></math></span> and <span><math><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> such that (a) and (b) are satisfied; whether (c) is also satisfied depends on the sequence <span><math><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span>. Finally, we address the uniqueness of <span><math><mi>θ</mi></math></span> and <span><math><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> and apply our framework to specific sequences.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001935772300054X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001935772300054X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

让0 & lt;θ⩽1。如果∑n=1∞1/bn=θ,则正整数序列(bn)n=1∞称为θ的弱贪心逼近。我们引入弱贪婪近似算法(WGAA),对于每个θ,产生两个正整数序列(an)和(bn),使得(a)∑n=1∞1/bn=θ;(b) 1/an+1<θ−∑i=1n1/bi<1/(an+1 - 1)对于所有n个小于或等于1的人;(c)存在t个小于或等于1的人,使得bn/an≤t无限频繁。然后,我们研究了WGAA何时可以产生给定的弱贪婪近似(bn)。此外,我们表明,对于具有a1小于2和an→∞的任何非递减(an),存在θ和(bn),使得(a)和(b)得到满足;是否满足(c)也取决于序列(an)。最后,我们讨论了θ和(bn)的唯一性,并将我们的框架应用于特定的序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Approximation by Egyptian fractions and the weak greedy algorithm

Let 0<θ1. A sequence of positive integers (bn)n=1 is called a weak greedy approximation of θ if n=11/bn=θ. We introduce the weak greedy approximation algorithm (WGAA), which, for each θ, produces two sequences of positive integers (an) and (bn) such that

(a) n=11/bn=θ;

(b) 1/an+1<θi=1n1/bi<1/(an+11) for all n1;

(c) there exists t1 such that bn/ant infinitely often.

We then investigate when a given weak greedy approximation (bn) can be produced by the WGAA. Furthermore, we show that for any non-decreasing (an) with a12 and an, there exist θ and (bn) such that (a) and (b) are satisfied; whether (c) is also satisfied depends on the sequence (an). Finally, we address the uniqueness of θ and (bn) and apply our framework to specific sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信