{"title":"定向优先依恋网络中互惠性的测量","authors":"Tiandong Wang, S. Resnick","doi":"10.1017/apr.2021.52","DOIUrl":null,"url":null,"abstract":"Abstract Empirical studies (e.g. Jiang et al. (2015) and Mislove et al. (2007)) show that online social networks have not only in- and out-degree distributions with Pareto-like tails, but also a high proportion of reciprocal edges. A classical directed preferential attachment (PA) model generates in- and out-degree distributions with power-law tails, but the theoretical properties of the reciprocity feature in this model have not yet been studied. We derive asymptotic results on the number of reciprocal edges between two fixed nodes, as well as the proportion of reciprocal edges in the entire PA network. We see that with certain choices of parameters, the proportion of reciprocal edges in a directed PA network is close to 0, which differs from the empirical observation. This points out one potential problem of fitting a classical PA model to a given network dataset with high reciprocity, and indicates that alternative models need to be considered.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Measuring reciprocity in a directed preferential attachment network\",\"authors\":\"Tiandong Wang, S. Resnick\",\"doi\":\"10.1017/apr.2021.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Empirical studies (e.g. Jiang et al. (2015) and Mislove et al. (2007)) show that online social networks have not only in- and out-degree distributions with Pareto-like tails, but also a high proportion of reciprocal edges. A classical directed preferential attachment (PA) model generates in- and out-degree distributions with power-law tails, but the theoretical properties of the reciprocity feature in this model have not yet been studied. We derive asymptotic results on the number of reciprocal edges between two fixed nodes, as well as the proportion of reciprocal edges in the entire PA network. We see that with certain choices of parameters, the proportion of reciprocal edges in a directed PA network is close to 0, which differs from the empirical observation. This points out one potential problem of fitting a classical PA model to a given network dataset with high reciprocity, and indicates that alternative models need to be considered.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2021.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2021.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
摘要实证研究(如Jiang et al.(2015)和Mislove et al.(2007))表明,在线社交网络不仅具有Pareto样尾部的内外度分布,而且具有较高比例的倒易边缘。一个经典的有向优先附着(PA)模型产生具有幂律尾的进出度分布,但该模型中互易特征的理论性质尚未得到研究。我们导出了两个固定节点之间倒易边的数量以及倒易边在整个PA网络中的比例的渐近结果。我们看到,在某些参数的选择下,有向PA网络中倒易边的比例接近0,这与经验观察不同。这指出了将经典PA模型拟合到具有高互易性的给定网络数据集的一个潜在问题,并表明需要考虑替代模型。
Measuring reciprocity in a directed preferential attachment network
Abstract Empirical studies (e.g. Jiang et al. (2015) and Mislove et al. (2007)) show that online social networks have not only in- and out-degree distributions with Pareto-like tails, but also a high proportion of reciprocal edges. A classical directed preferential attachment (PA) model generates in- and out-degree distributions with power-law tails, but the theoretical properties of the reciprocity feature in this model have not yet been studied. We derive asymptotic results on the number of reciprocal edges between two fixed nodes, as well as the proportion of reciprocal edges in the entire PA network. We see that with certain choices of parameters, the proportion of reciprocal edges in a directed PA network is close to 0, which differs from the empirical observation. This points out one potential problem of fitting a classical PA model to a given network dataset with high reciprocity, and indicates that alternative models need to be considered.