{"title":"密集随机块模型的模型选择","authors":"I. Norros, H. Reittu, F. Bazsó","doi":"10.1017/apr.2021.29","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies estimation of stochastic block models with Rissanen’s minimum description length (MDL) principle in the dense graph asymptotics. We focus on the problem of model specification, i.e., identification of the number of blocks. Refinements of the true partition always decrease the code part corresponding to the edge placement, and thus a respective increase of the code part specifying the model should overweight that gain in order to yield a minimum at the true partition. The balance between these effects turns out to be delicate. We show that the MDL principle identifies the true partition among models whose relative block sizes are bounded away from zero. The results are extended to models with Poisson-distributed edge weights.","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":"54 1","pages":"202 - 226"},"PeriodicalIF":0.9000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On model selection for dense stochastic block models\",\"authors\":\"I. Norros, H. Reittu, F. Bazsó\",\"doi\":\"10.1017/apr.2021.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper studies estimation of stochastic block models with Rissanen’s minimum description length (MDL) principle in the dense graph asymptotics. We focus on the problem of model specification, i.e., identification of the number of blocks. Refinements of the true partition always decrease the code part corresponding to the edge placement, and thus a respective increase of the code part specifying the model should overweight that gain in order to yield a minimum at the true partition. The balance between these effects turns out to be delicate. We show that the MDL principle identifies the true partition among models whose relative block sizes are bounded away from zero. The results are extended to models with Poisson-distributed edge weights.\",\"PeriodicalId\":53160,\"journal\":{\"name\":\"Advances in Applied Probability\",\"volume\":\"54 1\",\"pages\":\"202 - 226\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2021.29\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2021.29","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On model selection for dense stochastic block models
Abstract This paper studies estimation of stochastic block models with Rissanen’s minimum description length (MDL) principle in the dense graph asymptotics. We focus on the problem of model specification, i.e., identification of the number of blocks. Refinements of the true partition always decrease the code part corresponding to the edge placement, and thus a respective increase of the code part specifying the model should overweight that gain in order to yield a minimum at the true partition. The balance between these effects turns out to be delicate. We show that the MDL principle identifies the true partition among models whose relative block sizes are bounded away from zero. The results are extended to models with Poisson-distributed edge weights.
期刊介绍:
The Advances in Applied Probability has been published by the Applied Probability Trust for over four decades, and is a companion publication to the Journal of Applied Probability. It contains mathematical and scientific papers of interest to applied probabilists, with emphasis on applications in a broad spectrum of disciplines, including the biosciences, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.