库存脆弱性和复原力

SSRN Pub Date : 2023-02-13 DOI:10.2139/ssrn.4214805
M. Czasonis, Hui-Qing Song, D. Turkington
{"title":"库存脆弱性和复原力","authors":"M. Czasonis, Hui-Qing Song, D. Turkington","doi":"10.2139/ssrn.4214805","DOIUrl":null,"url":null,"abstract":"The authors propose a parsimonious yet flexible statistical method for predicting the relative vulnerability or resilience of individual stocks to market drawdowns. The authors’ approach compares a stock’s unique circumstances—as reflected in popular factor attributes—to the circumstances of stocks that have proven vulnerable or resilient to previous market drawdowns. Unlike other approaches, the authors’ method allows the influence of each factor attribute to vary across stocks in a nonlinear, conditional way. The authors test their explicit method for predicting stock vulnerability and resilience out of sample using the five largest market drawdowns since the global financial crisis. The nonlinear composite scores the authors derive are reliably better predictors of cross-sectional return than any of the individual factor attributes or an ex post linear combination of factor attributes.","PeriodicalId":74863,"journal":{"name":"SSRN","volume":"49 1","pages":"34 - 44"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stock Vulnerability and Resilience\",\"authors\":\"M. Czasonis, Hui-Qing Song, D. Turkington\",\"doi\":\"10.2139/ssrn.4214805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose a parsimonious yet flexible statistical method for predicting the relative vulnerability or resilience of individual stocks to market drawdowns. The authors’ approach compares a stock’s unique circumstances—as reflected in popular factor attributes—to the circumstances of stocks that have proven vulnerable or resilient to previous market drawdowns. Unlike other approaches, the authors’ method allows the influence of each factor attribute to vary across stocks in a nonlinear, conditional way. The authors test their explicit method for predicting stock vulnerability and resilience out of sample using the five largest market drawdowns since the global financial crisis. The nonlinear composite scores the authors derive are reliably better predictors of cross-sectional return than any of the individual factor attributes or an ex post linear combination of factor attributes.\",\"PeriodicalId\":74863,\"journal\":{\"name\":\"SSRN\",\"volume\":\"49 1\",\"pages\":\"34 - 44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SSRN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4214805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SSRN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4214805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作者提出了一种简洁而灵活的统计方法来预测个股对市场下跌的相对脆弱性或弹性。作者的方法将股票的独特情况(反映在流行因素属性中)与股票的情况进行了比较,这些股票已被证明对之前的市场下跌很脆弱或有弹性。与其他方法不同,作者的方法允许每个因素属性的影响以非线性、有条件的方式在股票中变化。作者使用全球金融危机以来最大的五次市场下跌来测试他们在样本外预测股票脆弱性和弹性的明确方法。作者推导出的非线性综合得分比任何单个因素属性或因素属性的事后线性组合都能可靠地更好地预测横断面回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stock Vulnerability and Resilience
The authors propose a parsimonious yet flexible statistical method for predicting the relative vulnerability or resilience of individual stocks to market drawdowns. The authors’ approach compares a stock’s unique circumstances—as reflected in popular factor attributes—to the circumstances of stocks that have proven vulnerable or resilient to previous market drawdowns. Unlike other approaches, the authors’ method allows the influence of each factor attribute to vary across stocks in a nonlinear, conditional way. The authors test their explicit method for predicting stock vulnerability and resilience out of sample using the five largest market drawdowns since the global financial crisis. The nonlinear composite scores the authors derive are reliably better predictors of cross-sectional return than any of the individual factor attributes or an ex post linear combination of factor attributes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信