氧气自然过滤条件下金属粉末短样品中的逆流燃烧波

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS
A. Bayliss, E. Shafirovich, V. Volpert
{"title":"氧气自然过滤条件下金属粉末短样品中的逆流燃烧波","authors":"A. Bayliss, E. Shafirovich, V. Volpert","doi":"10.1080/13647830.2022.2066024","DOIUrl":null,"url":null,"abstract":"Combustion of a porous solid fuel is considered. An exothermic reaction takes place between the fuel and a gaseous oxidiser which is delivered to the reaction zone by filtration through the pores in the sample from an open end toward which the combustion wave propagates (counterflow filtration). The gas reacts with the solid fuel to form a solid product. The gas filtration is due to the pressure difference between the ambient pressure at the open end and the pressure in the reaction zone where the gas is being consumed (referred to as natural filtration). A 1D mathematical model based on equations describing conservation of energy, gas mass, solid reactant mass, and gas momentum, as well as an equation of state, and appropriate boundary and initial conditions is formulated and analytically studied taking advantage of the separation of length scales in the process. When the reaction zone is sufficiently far from the open end, the combustion wave propagates at a constant speed and has a time-independent structure, while when the reaction is close to the open end (closer than the filtration length), the structure of the combustion wave and its speed become time dependent. Both cases are discussed in the paper though the main emphasis is on short samples, in which the combustion wave is affected by the gas flow from the open end during the entire propagation process. A specific example of interest involves magnesium as the solid fuel and oxygen as the gaseous oxidiser.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Counterflow combustion waves in short samples of metal powders at natural filtration of oxygen\",\"authors\":\"A. Bayliss, E. Shafirovich, V. Volpert\",\"doi\":\"10.1080/13647830.2022.2066024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combustion of a porous solid fuel is considered. An exothermic reaction takes place between the fuel and a gaseous oxidiser which is delivered to the reaction zone by filtration through the pores in the sample from an open end toward which the combustion wave propagates (counterflow filtration). The gas reacts with the solid fuel to form a solid product. The gas filtration is due to the pressure difference between the ambient pressure at the open end and the pressure in the reaction zone where the gas is being consumed (referred to as natural filtration). A 1D mathematical model based on equations describing conservation of energy, gas mass, solid reactant mass, and gas momentum, as well as an equation of state, and appropriate boundary and initial conditions is formulated and analytically studied taking advantage of the separation of length scales in the process. When the reaction zone is sufficiently far from the open end, the combustion wave propagates at a constant speed and has a time-independent structure, while when the reaction is close to the open end (closer than the filtration length), the structure of the combustion wave and its speed become time dependent. Both cases are discussed in the paper though the main emphasis is on short samples, in which the combustion wave is affected by the gas flow from the open end during the entire propagation process. A specific example of interest involves magnesium as the solid fuel and oxygen as the gaseous oxidiser.\",\"PeriodicalId\":50665,\"journal\":{\"name\":\"Combustion Theory and Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion Theory and Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13647830.2022.2066024\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2022.2066024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

考虑多孔固体燃料的燃烧。在燃料和气态氧化剂之间发生放热反应,气态氧化剂从燃烧波传播的开放端通过样品中的孔隙过滤(逆流过滤)被输送到反应区。气体与固体燃料反应形成固体产物。气体过滤是由于开口端的环境压力与气体被消耗的反应区压力之间的压力差(称为自然过滤)。利用过程中长度尺度的分离,建立了基于能量守恒、气体质量、固体反应物质量和气体动量方程、状态方程以及适当的边界和初始条件的一维数学模型,并对其进行了分析研究。当反应区距离开口端足够远时,燃烧波以恒定速度传播,具有时间无关的结构,而当反应区靠近开口端(比过滤长度更近)时,燃烧波的结构和速度与时间无关。本文对这两种情况都进行了讨论,但主要侧重于短样本,在短样本中,燃烧波在整个传播过程中都受到开口端气流的影响。我们感兴趣的一个具体例子是镁作为固体燃料,氧作为气态氧化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counterflow combustion waves in short samples of metal powders at natural filtration of oxygen
Combustion of a porous solid fuel is considered. An exothermic reaction takes place between the fuel and a gaseous oxidiser which is delivered to the reaction zone by filtration through the pores in the sample from an open end toward which the combustion wave propagates (counterflow filtration). The gas reacts with the solid fuel to form a solid product. The gas filtration is due to the pressure difference between the ambient pressure at the open end and the pressure in the reaction zone where the gas is being consumed (referred to as natural filtration). A 1D mathematical model based on equations describing conservation of energy, gas mass, solid reactant mass, and gas momentum, as well as an equation of state, and appropriate boundary and initial conditions is formulated and analytically studied taking advantage of the separation of length scales in the process. When the reaction zone is sufficiently far from the open end, the combustion wave propagates at a constant speed and has a time-independent structure, while when the reaction is close to the open end (closer than the filtration length), the structure of the combustion wave and its speed become time dependent. Both cases are discussed in the paper though the main emphasis is on short samples, in which the combustion wave is affected by the gas flow from the open end during the entire propagation process. A specific example of interest involves magnesium as the solid fuel and oxygen as the gaseous oxidiser.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion Theory and Modelling
Combustion Theory and Modelling 工程技术-工程:化工
CiteScore
3.00
自引率
7.70%
发文量
38
审稿时长
6 months
期刊介绍: Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信