Yangyishi Zhang, Minglei You, G. Zheng, A. A. Rawi, Anvar Tukmanov
{"title":"下行链路无小区固定无线接入:体系结构、物理现实和研究机会","authors":"Yangyishi Zhang, Minglei You, G. Zheng, A. A. Rawi, Anvar Tukmanov","doi":"10.1109/MWC.014.2100672","DOIUrl":null,"url":null,"abstract":"Recently, a new paradigm of wireless access, termed as cell-free massive multiple-input multiple-output (MIMO), has drawn significant research interest. Its primary distinction from conventional massive MIMO aided cellular networks is the ability to eliminate the detrimental inter-cell interference (ICI), or to convert ICI, into extra power for the intended signal via a multi-cell cooperation approach originated from network MIMO. However, the information-theoretical limit of cell-free access is achieved at the expense of large network configuration overhead and high MIMO processing complexity. Because of the dynamic nature of wireless channels, the global channel state information (CSI) invoked for network MIMO quickly becomes outdated, leading to performance degradation. This article focuses on the cell-free implementation of fixed wireless access (FWA), a complementary solution to fiber-to-the-premise (FTTP) where the latter is prohibitively expensive. In particular, we discuss the centralization architectures and channel characteristics of cell-free FWA, as well as their joint implications on imperfect CSI performance. Moreover, measurement-based offline simulations show that the long coherence time (‘quasi-static’) assumption of real-world FWA channels is only valid against a completely motionless background, and, thus, it should not be used in FWA system design or performance analysis. Finally, we present new research opportunities for cell-free FWA in terms of physical infrastructure, data processing, and machine learning.","PeriodicalId":13342,"journal":{"name":"IEEE Wireless Communications","volume":"30 1","pages":"155-162"},"PeriodicalIF":10.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downlink Cell-Free Fixed Wireless Access: Architectures, Physical Realities, and Research Opportunities\",\"authors\":\"Yangyishi Zhang, Minglei You, G. Zheng, A. A. Rawi, Anvar Tukmanov\",\"doi\":\"10.1109/MWC.014.2100672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a new paradigm of wireless access, termed as cell-free massive multiple-input multiple-output (MIMO), has drawn significant research interest. Its primary distinction from conventional massive MIMO aided cellular networks is the ability to eliminate the detrimental inter-cell interference (ICI), or to convert ICI, into extra power for the intended signal via a multi-cell cooperation approach originated from network MIMO. However, the information-theoretical limit of cell-free access is achieved at the expense of large network configuration overhead and high MIMO processing complexity. Because of the dynamic nature of wireless channels, the global channel state information (CSI) invoked for network MIMO quickly becomes outdated, leading to performance degradation. This article focuses on the cell-free implementation of fixed wireless access (FWA), a complementary solution to fiber-to-the-premise (FTTP) where the latter is prohibitively expensive. In particular, we discuss the centralization architectures and channel characteristics of cell-free FWA, as well as their joint implications on imperfect CSI performance. Moreover, measurement-based offline simulations show that the long coherence time (‘quasi-static’) assumption of real-world FWA channels is only valid against a completely motionless background, and, thus, it should not be used in FWA system design or performance analysis. Finally, we present new research opportunities for cell-free FWA in terms of physical infrastructure, data processing, and machine learning.\",\"PeriodicalId\":13342,\"journal\":{\"name\":\"IEEE Wireless Communications\",\"volume\":\"30 1\",\"pages\":\"155-162\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/MWC.014.2100672\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MWC.014.2100672","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Downlink Cell-Free Fixed Wireless Access: Architectures, Physical Realities, and Research Opportunities
Recently, a new paradigm of wireless access, termed as cell-free massive multiple-input multiple-output (MIMO), has drawn significant research interest. Its primary distinction from conventional massive MIMO aided cellular networks is the ability to eliminate the detrimental inter-cell interference (ICI), or to convert ICI, into extra power for the intended signal via a multi-cell cooperation approach originated from network MIMO. However, the information-theoretical limit of cell-free access is achieved at the expense of large network configuration overhead and high MIMO processing complexity. Because of the dynamic nature of wireless channels, the global channel state information (CSI) invoked for network MIMO quickly becomes outdated, leading to performance degradation. This article focuses on the cell-free implementation of fixed wireless access (FWA), a complementary solution to fiber-to-the-premise (FTTP) where the latter is prohibitively expensive. In particular, we discuss the centralization architectures and channel characteristics of cell-free FWA, as well as their joint implications on imperfect CSI performance. Moreover, measurement-based offline simulations show that the long coherence time (‘quasi-static’) assumption of real-world FWA channels is only valid against a completely motionless background, and, thus, it should not be used in FWA system design or performance analysis. Finally, we present new research opportunities for cell-free FWA in terms of physical infrastructure, data processing, and machine learning.
期刊介绍:
IEEE Wireless Communications is tailored for professionals within the communications and networking communities. It addresses technical and policy issues associated with personalized, location-independent communications across various media and protocol layers. Encompassing both wired and wireless communications, the magazine explores the intersection of computing, the mobility of individuals, communicating devices, and personalized services.
Every issue of this interdisciplinary publication presents high-quality articles delving into the revolutionary technological advances in personal, location-independent communications, and computing. IEEE Wireless Communications provides an insightful platform for individuals engaged in these dynamic fields, offering in-depth coverage of significant developments in the realm of communication technology.