关于ε因子的微局部几何局部化公式

IF 0.5 Q3 MATHEMATICS
Tomoyuki Abe, D. Patel
{"title":"关于ε因子的微局部几何局部化公式","authors":"Tomoyuki Abe, D. Patel","doi":"10.2140/AKT.2018.3.461","DOIUrl":null,"url":null,"abstract":"Given a lisse l-adic sheaf G on a smooth proper variety X and a lisse sheaf F on an open dense U in X, Kato and Saito conjectured a localization formula for the global l-adic epsilon factor εl(X,F ⊗ G) in terms of the global epsilon factor of F and a certain intersection number associated to det(G) and the Swan class of F . In this article, we prove an analog of this conjecture for global de Rham epsilon factors in the classical setting of DX -modules on smooth projective varieties over a field of characteristic zero.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/AKT.2018.3.461","citationCount":"6","resultStr":"{\"title\":\"On a localization formula of epsilon factors via microlocal geometry\",\"authors\":\"Tomoyuki Abe, D. Patel\",\"doi\":\"10.2140/AKT.2018.3.461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a lisse l-adic sheaf G on a smooth proper variety X and a lisse sheaf F on an open dense U in X, Kato and Saito conjectured a localization formula for the global l-adic epsilon factor εl(X,F ⊗ G) in terms of the global epsilon factor of F and a certain intersection number associated to det(G) and the Swan class of F . In this article, we prove an analog of this conjecture for global de Rham epsilon factors in the classical setting of DX -modules on smooth projective varieties over a field of characteristic zero.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/AKT.2018.3.461\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/AKT.2018.3.461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AKT.2018.3.461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

给定光滑本变种X上的lisse l-adic sheaf G和X中开稠密U上的lise sheaf F,Kato和Saito根据F的全局ε因子和与det(G)和F的Swan类相关的某个交集数,推测了全局l-adicε因子εl(X,F⊗G)的局部化公式。在本文中,我们证明了特征零域上光滑投影变种上DX-模的经典设置中的全局de Rhamε因子的这一猜想的类似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a localization formula of epsilon factors via microlocal geometry
Given a lisse l-adic sheaf G on a smooth proper variety X and a lisse sheaf F on an open dense U in X, Kato and Saito conjectured a localization formula for the global l-adic epsilon factor εl(X,F ⊗ G) in terms of the global epsilon factor of F and a certain intersection number associated to det(G) and the Swan class of F . In this article, we prove an analog of this conjecture for global de Rham epsilon factors in the classical setting of DX -modules on smooth projective varieties over a field of characteristic zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信