模的拟bigraduation,广义分析独立性准则

Q4 Mathematics
Y. Diagana
{"title":"模的拟bigraduation,广义分析独立性准则","authors":"Y. Diagana","doi":"10.22124/jart.2018.11137.1113","DOIUrl":null,"url":null,"abstract":"Let $mathcal{R}$ be a ring. For a quasi-bigraduation $f=I_{(p,q)}$of ${mathcal{R}} $ we define an $f^{+}-$quasi-bigraduation of an ${%mathcal{R}}$-module ${mathcal{M}}$ by a family $g=(G_{(m,n)})_{(m,n)inleft(mathbb{Z}times mathbb{Z}right) cup {infty }}$ of subgroups of $%{mathcal{M}}$ such that $G_{infty }=(0) $ and $I_{(p,q)}G_{(r,s)}subseteqG_{(p+r,q+s)},$ for all $(p,q)$ and all $(r,s)in left(mathbb{N} timesmathbb{N}right) cup {infty }.$ Here we show that $r$ elements of ${mathcal{R}}$ are $J-$independent oforder $k$ with respect to the $f^{+}$quasi-bigraduation $g$ if and only ifthe following two properties hold: they are $J-$independent of order $k$ with respect to the $^+$%quasi-bigraduation of ring $f_2(I_{(0,0)},I)$ and there exists a relation ofcompatibility between $g$ and $g_{I}$, where $I$ is the sub-$mathcal{A}-$%module of $mathcal{R}$ constructed by these elements. We also show that criteria of $J-$independence of compatiblequasi-bigraduations of module are given in terms of isomorphisms of gradedalgebras.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"6 1","pages":"79-96"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-bigraduations of Modules, criteria of generalized analytic independence\",\"authors\":\"Y. Diagana\",\"doi\":\"10.22124/jart.2018.11137.1113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $mathcal{R}$ be a ring. For a quasi-bigraduation $f=I_{(p,q)}$of ${mathcal{R}} $ we define an $f^{+}-$quasi-bigraduation of an ${%mathcal{R}}$-module ${mathcal{M}}$ by a family $g=(G_{(m,n)})_{(m,n)inleft(mathbb{Z}times mathbb{Z}right) cup {infty }}$ of subgroups of $%{mathcal{M}}$ such that $G_{infty }=(0) $ and $I_{(p,q)}G_{(r,s)}subseteqG_{(p+r,q+s)},$ for all $(p,q)$ and all $(r,s)in left(mathbb{N} timesmathbb{N}right) cup {infty }.$ Here we show that $r$ elements of ${mathcal{R}}$ are $J-$independent oforder $k$ with respect to the $f^{+}$quasi-bigraduation $g$ if and only ifthe following two properties hold: they are $J-$independent of order $k$ with respect to the $^+$%quasi-bigraduation of ring $f_2(I_{(0,0)},I)$ and there exists a relation ofcompatibility between $g$ and $g_{I}$, where $I$ is the sub-$mathcal{A}-$%module of $mathcal{R}$ constructed by these elements. We also show that criteria of $J-$independence of compatiblequasi-bigraduations of module are given in terms of isomorphisms of gradedalgebras.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"6 1\",\"pages\":\"79-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/jart.2018.11137.1113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/jart.2018.11137.1113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设$mathcal{R}$是一个环。对于${mathcal{R}}$的拟bigraduation$f=I_{(p,q)}$,我们定义了一个$g=(g_{(M,n)})_{(M,n)inleft(mathbb{Z}timesmathb{Z}right)$%{mathcal{M}}$的子群的杯{infty}$,使得$G_{infity}=(0)$和$I_{(p,q)}G_{{N}right)杯子{infty}.$这里我们证明了${mathcal{r}$的$r$元素是$J-$独立于阶$k$关于$f^{+}$拟重定$g$当且仅当以下两个性质成立时:它们是$J-$独立于$k$阶$f_2(I_{(0,0)},I)$关于$^+$%拟重定的$k$,并且$g$和$g_{I}$之间存在相容性关系,其中$I$是sub-$mathcal{A}-由这些元素构造的$mathcal{R}$的$%模块。我们还证明了模的相容拟双代数的$J-$独立性的判据是根据阶代数的同构给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-bigraduations of Modules, criteria of generalized analytic independence
Let $mathcal{R}$ be a ring. For a quasi-bigraduation $f=I_{(p,q)}$of ${mathcal{R}} $ we define an $f^{+}-$quasi-bigraduation of an ${%mathcal{R}}$-module ${mathcal{M}}$ by a family $g=(G_{(m,n)})_{(m,n)inleft(mathbb{Z}times mathbb{Z}right) cup {infty }}$ of subgroups of $%{mathcal{M}}$ such that $G_{infty }=(0) $ and $I_{(p,q)}G_{(r,s)}subseteqG_{(p+r,q+s)},$ for all $(p,q)$ and all $(r,s)in left(mathbb{N} timesmathbb{N}right) cup {infty }.$ Here we show that $r$ elements of ${mathcal{R}}$ are $J-$independent oforder $k$ with respect to the $f^{+}$quasi-bigraduation $g$ if and only ifthe following two properties hold: they are $J-$independent of order $k$ with respect to the $^+$%quasi-bigraduation of ring $f_2(I_{(0,0)},I)$ and there exists a relation ofcompatibility between $g$ and $g_{I}$, where $I$ is the sub-$mathcal{A}-$%module of $mathcal{R}$ constructed by these elements. We also show that criteria of $J-$independence of compatiblequasi-bigraduations of module are given in terms of isomorphisms of gradedalgebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra and Related Topics
Journal of Algebra and Related Topics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信