Vakeel A. Khan, Sameera A. A. Abdullah, Kamal M. A. S. Alshlool, Umme Tuba, Nazneen Khan
{"title":"2 -模糊n赋范线性空间中二重序列的理想收敛性","authors":"Vakeel A. Khan, Sameera A. A. Abdullah, Kamal M. A. S. Alshlool, Umme Tuba, Nazneen Khan","doi":"10.1007/s11766-022-3771-8","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this paper is to define the notions of convergence, Cauchy <i>st</i>—convergence, <i>st</i>—Cauchy, <i>I</i>—convergence and <i>I</i>—Cauchy for double sequences in 2—fuzzy <i>n</i>—normed spaces with respect to <i>α</i>—n—norms and study certain classical and standard properties related to these notions.</p></div>","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":"37 2","pages":"177 - 186"},"PeriodicalIF":1.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On ideal convergence of double sequences in 2—fuzzy n—normed linear space\",\"authors\":\"Vakeel A. Khan, Sameera A. A. Abdullah, Kamal M. A. S. Alshlool, Umme Tuba, Nazneen Khan\",\"doi\":\"10.1007/s11766-022-3771-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this paper is to define the notions of convergence, Cauchy <i>st</i>—convergence, <i>st</i>—Cauchy, <i>I</i>—convergence and <i>I</i>—Cauchy for double sequences in 2—fuzzy <i>n</i>—normed spaces with respect to <i>α</i>—n—norms and study certain classical and standard properties related to these notions.</p></div>\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":\"37 2\",\"pages\":\"177 - 186\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-022-3771-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-022-3771-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文的目的是定义2 -模糊n -范数空间中关于α - n -范数的二重序列的收敛性、Cauchy st -收敛性、st-Cauchy、i -收敛性和I-Cauchy的概念,并研究与这些概念相关的一些经典和标准性质。
On ideal convergence of double sequences in 2—fuzzy n—normed linear space
The purpose of this paper is to define the notions of convergence, Cauchy st—convergence, st—Cauchy, I—convergence and I—Cauchy for double sequences in 2—fuzzy n—normed spaces with respect to α—n—norms and study certain classical and standard properties related to these notions.
期刊介绍:
Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects.
The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry.
Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.