Luz Adriana Fernandez-Torrez, Joaquin Humberto Aquino-Rocha, N. G. Cayo-Chileno
{"title":"轮胎橡胶残渣部分替代混凝土细骨料的物理力学性能分析","authors":"Luz Adriana Fernandez-Torrez, Joaquin Humberto Aquino-Rocha, N. G. Cayo-Chileno","doi":"10.22320/07190700.2022.12.02.04","DOIUrl":null,"url":null,"abstract":"The objective of this study is to evaluate the physical and mechanical properties of concrete with waste tire rubber (WTR) as a partial substitute for sand, considering local materials from the city of Cochabamba, Bolivia, to promote a circular economy. The sand was replaced by WTR (in volume) in four percentages: 0% (reference), 5%, 10%, and 20%, evaluating its mechanical properties (resistance to compression, traction, and bending) and physical properties (specific mass, water absorption, and void index). The results indicate that there is a tendency to decrease with a higher percentage of WTR, both for mechanical resistance and for physical properties, except for the mixture with 5% WTR, which had results comparable to concrete with natural sand. WTR can be used in the local production of concrete up to 5% without compromising its mechanical and physical properties, in addition to having a sustainable approach.","PeriodicalId":41346,"journal":{"name":"Revista Habitat Sustentable","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Análisis de las propiedades físicas y mecánicas del residuo de caucho de neumático como reemplazo parcial del agregado fino en el hormigón\",\"authors\":\"Luz Adriana Fernandez-Torrez, Joaquin Humberto Aquino-Rocha, N. G. Cayo-Chileno\",\"doi\":\"10.22320/07190700.2022.12.02.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to evaluate the physical and mechanical properties of concrete with waste tire rubber (WTR) as a partial substitute for sand, considering local materials from the city of Cochabamba, Bolivia, to promote a circular economy. The sand was replaced by WTR (in volume) in four percentages: 0% (reference), 5%, 10%, and 20%, evaluating its mechanical properties (resistance to compression, traction, and bending) and physical properties (specific mass, water absorption, and void index). The results indicate that there is a tendency to decrease with a higher percentage of WTR, both for mechanical resistance and for physical properties, except for the mixture with 5% WTR, which had results comparable to concrete with natural sand. WTR can be used in the local production of concrete up to 5% without compromising its mechanical and physical properties, in addition to having a sustainable approach.\",\"PeriodicalId\":41346,\"journal\":{\"name\":\"Revista Habitat Sustentable\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Habitat Sustentable\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22320/07190700.2022.12.02.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Habitat Sustentable","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22320/07190700.2022.12.02.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Análisis de las propiedades físicas y mecánicas del residuo de caucho de neumático como reemplazo parcial del agregado fino en el hormigón
The objective of this study is to evaluate the physical and mechanical properties of concrete with waste tire rubber (WTR) as a partial substitute for sand, considering local materials from the city of Cochabamba, Bolivia, to promote a circular economy. The sand was replaced by WTR (in volume) in four percentages: 0% (reference), 5%, 10%, and 20%, evaluating its mechanical properties (resistance to compression, traction, and bending) and physical properties (specific mass, water absorption, and void index). The results indicate that there is a tendency to decrease with a higher percentage of WTR, both for mechanical resistance and for physical properties, except for the mixture with 5% WTR, which had results comparable to concrete with natural sand. WTR can be used in the local production of concrete up to 5% without compromising its mechanical and physical properties, in addition to having a sustainable approach.