T. Nguyen, P. Lemaitre, Masaki Kato, K. Hirota, K. Tsukagoshi, H. Yamada, Atsuki Terabe, Hidetoshi Mizutani, S. Kanehira
{"title":"暗条件下氧化钛纳米粉体的制备","authors":"T. Nguyen, P. Lemaitre, Masaki Kato, K. Hirota, K. Tsukagoshi, H. Yamada, Atsuki Terabe, Hidetoshi Mizutani, S. Kanehira","doi":"10.4236/MSA.2021.122006","DOIUrl":null,"url":null,"abstract":"Recently, under the circumstances of pandemic of COVID-19 much attention has been paid to titanium dioxide TiO2 as bactericidal agent; however, conventional TiO2 requires ultraviolet radiation or visible light to exercise its photocatalytic properties and its induced antimicrobial activity. In order to expand its applications directed at wide civil life, antibacterial TiO2 being usable under dark conditions has been demanded. The present paper describes the powder characterization of newly developed potassium K and phosphorous P co-doped nanometer-size anatase TiO2 powders using X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM & TEM), Brunauer-Emmett-Teller method (BET), fourier-transform infrared spectroscopy (FT-IR), X-ray absorption fine structure (XAFS), electron spin resonance (ESR) and chemiluminescence (CL). It was found for the first time that thus prepared anatase TiO2 could submit much reactive oxygen species (ROS) even in the dark, which has close relation with bactericidal activity in light interception.","PeriodicalId":68376,"journal":{"name":"材料科学与应用期刊(英文)","volume":"12 1","pages":"89-110"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Preparation of Anatase Titanium Dioxide Nanoparticle Powders Submitting Reactive Oxygen Species (ROS) under Dark Conditions\",\"authors\":\"T. Nguyen, P. Lemaitre, Masaki Kato, K. Hirota, K. Tsukagoshi, H. Yamada, Atsuki Terabe, Hidetoshi Mizutani, S. Kanehira\",\"doi\":\"10.4236/MSA.2021.122006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, under the circumstances of pandemic of COVID-19 much attention has been paid to titanium dioxide TiO2 as bactericidal agent; however, conventional TiO2 requires ultraviolet radiation or visible light to exercise its photocatalytic properties and its induced antimicrobial activity. In order to expand its applications directed at wide civil life, antibacterial TiO2 being usable under dark conditions has been demanded. The present paper describes the powder characterization of newly developed potassium K and phosphorous P co-doped nanometer-size anatase TiO2 powders using X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM & TEM), Brunauer-Emmett-Teller method (BET), fourier-transform infrared spectroscopy (FT-IR), X-ray absorption fine structure (XAFS), electron spin resonance (ESR) and chemiluminescence (CL). It was found for the first time that thus prepared anatase TiO2 could submit much reactive oxygen species (ROS) even in the dark, which has close relation with bactericidal activity in light interception.\",\"PeriodicalId\":68376,\"journal\":{\"name\":\"材料科学与应用期刊(英文)\",\"volume\":\"12 1\",\"pages\":\"89-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料科学与应用期刊(英文)\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.4236/MSA.2021.122006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料科学与应用期刊(英文)","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.4236/MSA.2021.122006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation of Anatase Titanium Dioxide Nanoparticle Powders Submitting Reactive Oxygen Species (ROS) under Dark Conditions
Recently, under the circumstances of pandemic of COVID-19 much attention has been paid to titanium dioxide TiO2 as bactericidal agent; however, conventional TiO2 requires ultraviolet radiation or visible light to exercise its photocatalytic properties and its induced antimicrobial activity. In order to expand its applications directed at wide civil life, antibacterial TiO2 being usable under dark conditions has been demanded. The present paper describes the powder characterization of newly developed potassium K and phosphorous P co-doped nanometer-size anatase TiO2 powders using X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM & TEM), Brunauer-Emmett-Teller method (BET), fourier-transform infrared spectroscopy (FT-IR), X-ray absorption fine structure (XAFS), electron spin resonance (ESR) and chemiluminescence (CL). It was found for the first time that thus prepared anatase TiO2 could submit much reactive oxygen species (ROS) even in the dark, which has close relation with bactericidal activity in light interception.