{"title":"一个源于数论的参数函数方程","authors":"A. Mouzoun, D. Zeglami, Y. Aissi","doi":"10.2478/amsil-2022-0001","DOIUrl":null,"url":null,"abstract":"Abstract Let S be a semigroup and α, β ∈ ℝ. The purpose of this paper is to determine the general solution f : ℝ2 → S of the following parametric functional equation f(x1+x2+αy1y2,x1y2+x2y1+βy1y2)=f(x1,y1)f(x2,y2), f\\left( {{x_1} + {x_2} + \\alpha {y_1}{y_2},{x_1}{y_2} + {x_2}{y_1} + \\beta {y_1}{y_2}} \\right) = f\\left( {{x_1},{y_1}} \\right)f\\left( {{x_2},{y_2}} \\right), for all (x1, y1), (x2, y2) ∈ ℝ2, that generalizes some functional equations arising from number theory and is connected with the characterizations of the determinant of matrices.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"36 1","pages":"71 - 91"},"PeriodicalIF":0.4000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Parametric Functional Equation Originating from Number Theory\",\"authors\":\"A. Mouzoun, D. Zeglami, Y. Aissi\",\"doi\":\"10.2478/amsil-2022-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let S be a semigroup and α, β ∈ ℝ. The purpose of this paper is to determine the general solution f : ℝ2 → S of the following parametric functional equation f(x1+x2+αy1y2,x1y2+x2y1+βy1y2)=f(x1,y1)f(x2,y2), f\\\\left( {{x_1} + {x_2} + \\\\alpha {y_1}{y_2},{x_1}{y_2} + {x_2}{y_1} + \\\\beta {y_1}{y_2}} \\\\right) = f\\\\left( {{x_1},{y_1}} \\\\right)f\\\\left( {{x_2},{y_2}} \\\\right), for all (x1, y1), (x2, y2) ∈ ℝ2, that generalizes some functional equations arising from number theory and is connected with the characterizations of the determinant of matrices.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"36 1\",\"pages\":\"71 - 91\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2022-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2022-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Parametric Functional Equation Originating from Number Theory
Abstract Let S be a semigroup and α, β ∈ ℝ. The purpose of this paper is to determine the general solution f : ℝ2 → S of the following parametric functional equation f(x1+x2+αy1y2,x1y2+x2y1+βy1y2)=f(x1,y1)f(x2,y2), f\left( {{x_1} + {x_2} + \alpha {y_1}{y_2},{x_1}{y_2} + {x_2}{y_1} + \beta {y_1}{y_2}} \right) = f\left( {{x_1},{y_1}} \right)f\left( {{x_2},{y_2}} \right), for all (x1, y1), (x2, y2) ∈ ℝ2, that generalizes some functional equations arising from number theory and is connected with the characterizations of the determinant of matrices.