有源相控阵在功率和转向角变化下的混合数字预失真

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yunfeng Li, Yonghui Huang, Qingyue Chen, Feridoon Jalili, Kasper B. Olesen, J. G. Brask, Lauge F. Dyring, G. F. Pedersen, M. Shen
{"title":"有源相控阵在功率和转向角变化下的混合数字预失真","authors":"Yunfeng Li, Yonghui Huang, Qingyue Chen, Feridoon Jalili, Kasper B. Olesen, J. G. Brask, Lauge F. Dyring, G. F. Pedersen, M. Shen","doi":"10.1109/LMWC.2022.3172215","DOIUrl":null,"url":null,"abstract":"This letter proposes a memory polynomial (MPM)-aided deep neural network (DNN) digital pre-distortion (MaD-DPD) method for active phased arrays (APAs) subject to varied input power and steering angle. This has been challenging for traditional array linearization methods using either MPM or DNN, which rely on the in-phase and quadrature-phase (I/Q) signal as input and output to derive model parameters. In comparison, the proposed method actively incorporates MPM and DNNs to achieve linearization. The model uses only two varied APA state parameters (input power and steering angle) as input and the MPM coefficients as regression target, eliminating the need for model parameter updating. The MaD-DPD method is validated using a four-by-four antenna array at 28 GHz with 21 input power levels and a broad range of steering angles from −78° to 78°, improving up to 13.16% in error vector magnitude (EVM) and 18.21 dBc in adjacent channel leakage ratio (ACLR).","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1243-1246"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Digital Pre-Distortion for Active Phased Arrays Subject to Varied Power and Steering Angle\",\"authors\":\"Yunfeng Li, Yonghui Huang, Qingyue Chen, Feridoon Jalili, Kasper B. Olesen, J. G. Brask, Lauge F. Dyring, G. F. Pedersen, M. Shen\",\"doi\":\"10.1109/LMWC.2022.3172215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes a memory polynomial (MPM)-aided deep neural network (DNN) digital pre-distortion (MaD-DPD) method for active phased arrays (APAs) subject to varied input power and steering angle. This has been challenging for traditional array linearization methods using either MPM or DNN, which rely on the in-phase and quadrature-phase (I/Q) signal as input and output to derive model parameters. In comparison, the proposed method actively incorporates MPM and DNNs to achieve linearization. The model uses only two varied APA state parameters (input power and steering angle) as input and the MPM coefficients as regression target, eliminating the need for model parameter updating. The MaD-DPD method is validated using a four-by-four antenna array at 28 GHz with 21 input power levels and a broad range of steering angles from −78° to 78°, improving up to 13.16% in error vector magnitude (EVM) and 18.21 dBc in adjacent channel leakage ratio (ACLR).\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1243-1246\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3172215\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3172215","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种记忆多项式(MPM)辅助深度神经网络(DNN)数字预失真(MaD-DPD)方法,用于受不同输入功率和转向角影响的有源相控阵(APAs)。这对于使用MPM或DNN的传统阵列线性化方法来说是一个挑战,这些方法依赖于同相和正交相(I/Q)信号作为输入和输出来获得模型参数。相比之下,该方法主动结合MPM和dnn来实现线性化。该模型仅使用两个不同的APA状态参数(输入功率和转向角)作为输入,MPM系数作为回归目标,无需更新模型参数。MaD-DPD方法在28 GHz的4 × 4天线阵列上进行了验证,该天线阵列具有21个输入功率电平和- 78°到78°的宽转向角范围,误差矢量幅度(EVM)提高了13.16%,相邻通道泄漏比(ACLR)提高了18.21 dBc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Digital Pre-Distortion for Active Phased Arrays Subject to Varied Power and Steering Angle
This letter proposes a memory polynomial (MPM)-aided deep neural network (DNN) digital pre-distortion (MaD-DPD) method for active phased arrays (APAs) subject to varied input power and steering angle. This has been challenging for traditional array linearization methods using either MPM or DNN, which rely on the in-phase and quadrature-phase (I/Q) signal as input and output to derive model parameters. In comparison, the proposed method actively incorporates MPM and DNNs to achieve linearization. The model uses only two varied APA state parameters (input power and steering angle) as input and the MPM coefficients as regression target, eliminating the need for model parameter updating. The MaD-DPD method is validated using a four-by-four antenna array at 28 GHz with 21 input power levels and a broad range of steering angles from −78° to 78°, improving up to 13.16% in error vector magnitude (EVM) and 18.21 dBc in adjacent channel leakage ratio (ACLR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Microwave and Wireless Components Letters
IEEE Microwave and Wireless Components Letters 工程技术-工程:电子与电气
自引率
13.30%
发文量
376
审稿时长
3.0 months
期刊介绍: The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信