具有Smital属性的理想

IF 0.3 4区 数学 Q1 Arts and Humanities
Marcin Michalski, Robert Rałowski, Szymon Żeberski
{"title":"具有Smital属性的理想","authors":"Marcin Michalski,&nbsp;Robert Rałowski,&nbsp;Szymon Żeberski","doi":"10.1007/s00153-023-00867-5","DOIUrl":null,"url":null,"abstract":"<div><p>A <span>\\(\\sigma \\)</span>-ideal <span>\\(\\mathcal {I}\\)</span> on a Polish group <span>\\((X,+)\\)</span> has the Smital Property if for every dense set <i>D</i> and a Borel <span>\\(\\mathcal {I}\\)</span>-positive set <i>B</i> the algebraic sum <span>\\(D+B\\)</span> is a complement of a set from <span>\\(\\mathcal {I}\\)</span>. We consider several variants of this property and study their connections with the countable chain condition, maximality and how well they are preserved via Fubini products. In particular we show that there are <span>\\(\\mathfrak {c}\\)</span> many maximal invariant <span>\\(\\sigma \\)</span>-ideals with Borel bases on the Cantor space <span>\\(2^\\omega \\)</span>.\n</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-023-00867-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Ideals with Smital properties\",\"authors\":\"Marcin Michalski,&nbsp;Robert Rałowski,&nbsp;Szymon Żeberski\",\"doi\":\"10.1007/s00153-023-00867-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A <span>\\\\(\\\\sigma \\\\)</span>-ideal <span>\\\\(\\\\mathcal {I}\\\\)</span> on a Polish group <span>\\\\((X,+)\\\\)</span> has the Smital Property if for every dense set <i>D</i> and a Borel <span>\\\\(\\\\mathcal {I}\\\\)</span>-positive set <i>B</i> the algebraic sum <span>\\\\(D+B\\\\)</span> is a complement of a set from <span>\\\\(\\\\mathcal {I}\\\\)</span>. We consider several variants of this property and study their connections with the countable chain condition, maximality and how well they are preserved via Fubini products. In particular we show that there are <span>\\\\(\\\\mathfrak {c}\\\\)</span> many maximal invariant <span>\\\\(\\\\sigma \\\\)</span>-ideals with Borel bases on the Cantor space <span>\\\\(2^\\\\omega \\\\)</span>.\\n</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00153-023-00867-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-023-00867-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-023-00867-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

波兰群\((X,+)\)上的\(\sigma \) -理想\(\mathcal {I}\)具有Smital性质,如果对于每个稠密集D和Borel \(\mathcal {I}\) -正集B,其代数和\(D+B\)是来自\(\mathcal {I}\)的集合的补。我们考虑了这一性质的几种变体,并研究了它们与可数链条件、极大性的联系,以及它们如何通过富比尼积保持。特别地,我们证明了在Cantor空间\(2^\omega \)上存在\(\mathfrak {c}\)许多基于Borel的极大不变\(\sigma \)理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ideals with Smital properties

A \(\sigma \)-ideal \(\mathcal {I}\) on a Polish group \((X,+)\) has the Smital Property if for every dense set D and a Borel \(\mathcal {I}\)-positive set B the algebraic sum \(D+B\) is a complement of a set from \(\mathcal {I}\). We consider several variants of this property and study their connections with the countable chain condition, maximality and how well they are preserved via Fubini products. In particular we show that there are \(\mathfrak {c}\) many maximal invariant \(\sigma \)-ideals with Borel bases on the Cantor space \(2^\omega \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信