{"title":"ivmte:一个用于从Compliers外推仪器变量估计的R包*","authors":"Joshua Shea, Alexander Torgovitsky","doi":"10.1353/obs.2023.0016","DOIUrl":null,"url":null,"abstract":"Abstract:Instrumental variable (IV) strategies are widely used to estimate causal effects in economics, political science, epidemiology, sociology, psychology, and other fields. When there is unobserved heterogeneity in causal effects, standard linear IV estimators only represent effects for complier subpopulations (Imbens and Angrist, 1994). Marginal treatment effect (MTE) methods (Heckman and Vytlacil, 1999, 2005) allow researchers to use additional assumptions to extrapolate beyond complier subpopulations. We discuss a flexible framework for MTE methods based on linear regression and the generalized method of moments. We show how to implement the framework using the ivmte package for R.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":"9 1","pages":"1 - 42"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ivmte: An R Package for Extrapolating Instrumental Variable Estimates Away From Compliers*\",\"authors\":\"Joshua Shea, Alexander Torgovitsky\",\"doi\":\"10.1353/obs.2023.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:Instrumental variable (IV) strategies are widely used to estimate causal effects in economics, political science, epidemiology, sociology, psychology, and other fields. When there is unobserved heterogeneity in causal effects, standard linear IV estimators only represent effects for complier subpopulations (Imbens and Angrist, 1994). Marginal treatment effect (MTE) methods (Heckman and Vytlacil, 1999, 2005) allow researchers to use additional assumptions to extrapolate beyond complier subpopulations. We discuss a flexible framework for MTE methods based on linear regression and the generalized method of moments. We show how to implement the framework using the ivmte package for R.\",\"PeriodicalId\":74335,\"journal\":{\"name\":\"Observational studies\",\"volume\":\"9 1\",\"pages\":\"1 - 42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Observational studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/obs.2023.0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2023.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ivmte: An R Package for Extrapolating Instrumental Variable Estimates Away From Compliers*
Abstract:Instrumental variable (IV) strategies are widely used to estimate causal effects in economics, political science, epidemiology, sociology, psychology, and other fields. When there is unobserved heterogeneity in causal effects, standard linear IV estimators only represent effects for complier subpopulations (Imbens and Angrist, 1994). Marginal treatment effect (MTE) methods (Heckman and Vytlacil, 1999, 2005) allow researchers to use additional assumptions to extrapolate beyond complier subpopulations. We discuss a flexible framework for MTE methods based on linear regression and the generalized method of moments. We show how to implement the framework using the ivmte package for R.