FinEAS:情绪的金融嵌入分析

SSRN Pub Date : 2021-10-31 DOI:10.2139/ssrn.4028072
Asier Gutiérrez-Fandiño, M. N. Alonso, Petter N. Kolm, Jordi Armengol-Estap'e
{"title":"FinEAS:情绪的金融嵌入分析","authors":"Asier Gutiérrez-Fandiño, M. N. Alonso, Petter N. Kolm, Jordi Armengol-Estap'e","doi":"10.2139/ssrn.4028072","DOIUrl":null,"url":null,"abstract":"In this article, the authors introduce a new language representation model for sentiment analysis of financial text called financial embedding analysis of sentiment (FinEAS). The new approach is based on transformer language models that are explicitly developed for sentence-level analysis. By building upon Sentence-BERT, a sentence-level extension of vanilla BERT, the authors argue that the new approach produces sentence embeddings of higher quality that significantly improve sentence/document-level tasks such as financial sentiment analysis. Using a large-scale financial news dataset from RavenPack, they demonstrate that for financial sentiment analysis the new model outperforms several state-of-the-art models such as BERT, a bidirectional LSTM, and FinBERT, a financial-domain-specific BERT. The authors make the model code publicly available.","PeriodicalId":74863,"journal":{"name":"SSRN","volume":"4 1","pages":"45 - 53"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"FinEAS: Financial Embedding Analysis of Sentiment\",\"authors\":\"Asier Gutiérrez-Fandiño, M. N. Alonso, Petter N. Kolm, Jordi Armengol-Estap'e\",\"doi\":\"10.2139/ssrn.4028072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the authors introduce a new language representation model for sentiment analysis of financial text called financial embedding analysis of sentiment (FinEAS). The new approach is based on transformer language models that are explicitly developed for sentence-level analysis. By building upon Sentence-BERT, a sentence-level extension of vanilla BERT, the authors argue that the new approach produces sentence embeddings of higher quality that significantly improve sentence/document-level tasks such as financial sentiment analysis. Using a large-scale financial news dataset from RavenPack, they demonstrate that for financial sentiment analysis the new model outperforms several state-of-the-art models such as BERT, a bidirectional LSTM, and FinBERT, a financial-domain-specific BERT. The authors make the model code publicly available.\",\"PeriodicalId\":74863,\"journal\":{\"name\":\"SSRN\",\"volume\":\"4 1\",\"pages\":\"45 - 53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SSRN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4028072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SSRN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4028072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种新的金融文本情感分析的语言表示模型——金融嵌入情感分析(FinEAS)。这种新方法基于为句子级分析而明确开发的转换语言模型。作者认为,通过建立在sentence- BERT (vanilla BERT的句子级扩展)的基础上,新方法产生了更高质量的句子嵌入,显著改善了句子/文档级任务,如金融情绪分析。使用RavenPack的大规模金融新闻数据集,他们证明,对于金融情绪分析,新模型优于几个最先进的模型,如BERT,一个双向LSTM,和FinBERT,一个金融领域特定的BERT。作者公开了模型代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FinEAS: Financial Embedding Analysis of Sentiment
In this article, the authors introduce a new language representation model for sentiment analysis of financial text called financial embedding analysis of sentiment (FinEAS). The new approach is based on transformer language models that are explicitly developed for sentence-level analysis. By building upon Sentence-BERT, a sentence-level extension of vanilla BERT, the authors argue that the new approach produces sentence embeddings of higher quality that significantly improve sentence/document-level tasks such as financial sentiment analysis. Using a large-scale financial news dataset from RavenPack, they demonstrate that for financial sentiment analysis the new model outperforms several state-of-the-art models such as BERT, a bidirectional LSTM, and FinBERT, a financial-domain-specific BERT. The authors make the model code publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信