使用Bernstein多项式的非匿名增长关联曲线的贝叶斯推断:在学术工资动态中的应用

IF 0.7 4区 经济学 Q3 ECONOMICS
Edwin Fourrier-Nicolaï, M. Lubrano
{"title":"使用Bernstein多项式的非匿名增长关联曲线的贝叶斯推断:在学术工资动态中的应用","authors":"Edwin Fourrier-Nicolaï, M. Lubrano","doi":"10.1515/snde-2022-0109","DOIUrl":null,"url":null,"abstract":"Abstract The paper examines the question of non-anonymous Growth Incidence Curves (na-GIC) from a Bayesian inferential point of view. Building on the notion of conditional quantiles of Barnett (1976. “The Ordering of Multivariate Data.” Journal of the Royal Statistical Society: Series A 139: 318–55), we show that removing the anonymity axiom leads to a complex and shaky curve that has to be smoothed, using a non-parametric approach. We opted for a Bayesian approach using Bernstein polynomials which provides confidence intervals, tests and a simple way to compare two na-GICs. The methodology is applied to examine wage dynamics in a US university with a particular attention devoted to unbundling and anti-discrimination policies. Our findings are the detection of wage scale compression for higher quantiles for all academics and an apparent pro-female wage increase compared to males. But this pro-female policy works only for academics and not for the para-academics categories created by the unbundling policy.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics\",\"authors\":\"Edwin Fourrier-Nicolaï, M. Lubrano\",\"doi\":\"10.1515/snde-2022-0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper examines the question of non-anonymous Growth Incidence Curves (na-GIC) from a Bayesian inferential point of view. Building on the notion of conditional quantiles of Barnett (1976. “The Ordering of Multivariate Data.” Journal of the Royal Statistical Society: Series A 139: 318–55), we show that removing the anonymity axiom leads to a complex and shaky curve that has to be smoothed, using a non-parametric approach. We opted for a Bayesian approach using Bernstein polynomials which provides confidence intervals, tests and a simple way to compare two na-GICs. The methodology is applied to examine wage dynamics in a US university with a particular attention devoted to unbundling and anti-discrimination policies. Our findings are the detection of wage scale compression for higher quantiles for all academics and an apparent pro-female wage increase compared to males. But this pro-female policy works only for academics and not for the para-academics categories created by the unbundling policy.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2022-0109\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2022-0109","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文从贝叶斯推理的角度研究了非匿名增长关联曲线(na-GIC)问题。以Barnett(1976)的条件分位数概念为基础。多元数据的排序。皇家统计学会杂志:系列A 139: 318-55),我们表明,去除匿名公理导致复杂和摇摇晃晃的曲线,必须使用非参数方法进行平滑。我们选择使用Bernstein多项式的贝叶斯方法,它提供了置信区间,测试和比较两个na- gic的简单方法。该方法被用于研究美国一所大学的工资动态,特别关注分拆和反歧视政策。我们的研究发现,所有学者的工资水平都存在较高分位数的压缩,与男性相比,女性的工资明显增加。但这种支持女性的政策只适用于学者,而不适用于由分拆政策产生的准学者类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics
Abstract The paper examines the question of non-anonymous Growth Incidence Curves (na-GIC) from a Bayesian inferential point of view. Building on the notion of conditional quantiles of Barnett (1976. “The Ordering of Multivariate Data.” Journal of the Royal Statistical Society: Series A 139: 318–55), we show that removing the anonymity axiom leads to a complex and shaky curve that has to be smoothed, using a non-parametric approach. We opted for a Bayesian approach using Bernstein polynomials which provides confidence intervals, tests and a simple way to compare two na-GICs. The methodology is applied to examine wage dynamics in a US university with a particular attention devoted to unbundling and anti-discrimination policies. Our findings are the detection of wage scale compression for higher quantiles for all academics and an apparent pro-female wage increase compared to males. But this pro-female policy works only for academics and not for the para-academics categories created by the unbundling policy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信