{"title":"基于进化算法的TITO过程多回路FOPID控制器设计","authors":"S. Lakshmanaprabu, D. N. Jamal, U. Banu","doi":"10.4018/IJEOE.2019070107","DOIUrl":null,"url":null,"abstract":"In this article, the tuning of multiloop Fractional Order PID (FOPID) controller is designed for Two Input Two Output (TITO) processes using an evolutionary algorithm such as the Genetic algorithm (GA), the Cuckoo Search algorithm (CS) and the Bat Algorithm (BA). The control parameters of FOPID are obtained using GA, CS, and BA for minimizing the integral error criteria. The main objective of this article is to compare the performance of the GA, CS, and BA for the multiloop FOPID controller problem. The integer order internal model control based PID (IMC-PID) controller is designed using the GA and the performance of the IMC-PID controller is compared with the FOPID controller scheme. The simulation results confirm that BA offers optimal controller parameter with a minimum value of IAE, ISE, ITAE with faster settling time.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/IJEOE.2019070107","citationCount":"2","resultStr":"{\"title\":\"Multiloop FOPID Controller Design for TITO Process Using Evolutionary Algorithm\",\"authors\":\"S. Lakshmanaprabu, D. N. Jamal, U. Banu\",\"doi\":\"10.4018/IJEOE.2019070107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the tuning of multiloop Fractional Order PID (FOPID) controller is designed for Two Input Two Output (TITO) processes using an evolutionary algorithm such as the Genetic algorithm (GA), the Cuckoo Search algorithm (CS) and the Bat Algorithm (BA). The control parameters of FOPID are obtained using GA, CS, and BA for minimizing the integral error criteria. The main objective of this article is to compare the performance of the GA, CS, and BA for the multiloop FOPID controller problem. The integer order internal model control based PID (IMC-PID) controller is designed using the GA and the performance of the IMC-PID controller is compared with the FOPID controller scheme. The simulation results confirm that BA offers optimal controller parameter with a minimum value of IAE, ISE, ITAE with faster settling time.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4018/IJEOE.2019070107\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJEOE.2019070107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJEOE.2019070107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiloop FOPID Controller Design for TITO Process Using Evolutionary Algorithm
In this article, the tuning of multiloop Fractional Order PID (FOPID) controller is designed for Two Input Two Output (TITO) processes using an evolutionary algorithm such as the Genetic algorithm (GA), the Cuckoo Search algorithm (CS) and the Bat Algorithm (BA). The control parameters of FOPID are obtained using GA, CS, and BA for minimizing the integral error criteria. The main objective of this article is to compare the performance of the GA, CS, and BA for the multiloop FOPID controller problem. The integer order internal model control based PID (IMC-PID) controller is designed using the GA and the performance of the IMC-PID controller is compared with the FOPID controller scheme. The simulation results confirm that BA offers optimal controller parameter with a minimum value of IAE, ISE, ITAE with faster settling time.