凸随机优化中的蒙特卡罗方法

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Daniel Bartl, S. Mendelson
{"title":"凸随机优化中的蒙特卡罗方法","authors":"Daniel Bartl, S. Mendelson","doi":"10.1214/22-aap1781","DOIUrl":null,"url":null,"abstract":"We develop a novel procedure for estimating the optimizer of general convex stochastic optimization problems of the form minx∈X E[F (x, ξ)], when the given data is a finite independent sample selected according to ξ. The procedure is based on a median-of-means tournament, and is the first procedure that exhibits the optimal statistical performance in heavy tailed situations: we recover the asymptotic rates dictated by the central limit theorem in a non-asymptotic manner once the sample size exceeds some explicitly computable threshold. Additionally, our results apply in the high-dimensional setup, as the threshold sample size exhibits the optimal dependence on the dimension (up to a logarithmic factor). The general setting allows us to recover recent results on multivariate mean estimation and linear regression in heavy-tailed situations and to prove the first sharp, non-asymptotic results for the portfolio optimization problem.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On Monte-Carlo methods in convex stochastic optimization\",\"authors\":\"Daniel Bartl, S. Mendelson\",\"doi\":\"10.1214/22-aap1781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a novel procedure for estimating the optimizer of general convex stochastic optimization problems of the form minx∈X E[F (x, ξ)], when the given data is a finite independent sample selected according to ξ. The procedure is based on a median-of-means tournament, and is the first procedure that exhibits the optimal statistical performance in heavy tailed situations: we recover the asymptotic rates dictated by the central limit theorem in a non-asymptotic manner once the sample size exceeds some explicitly computable threshold. Additionally, our results apply in the high-dimensional setup, as the threshold sample size exhibits the optimal dependence on the dimension (up to a logarithmic factor). The general setting allows us to recover recent results on multivariate mean estimation and linear regression in heavy-tailed situations and to prove the first sharp, non-asymptotic results for the portfolio optimization problem.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1781\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1781","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8

摘要

当给定数据是根据ξ选择的有限独立样本时,我们提出了一种新的估计形式为minx∈X E[F (X, ξ)]的一般凸随机优化问题的优化器的方法。该过程基于中位数竞赛,并且是在重尾情况下显示最佳统计性能的第一个过程:一旦样本量超过某些显式可计算的阈值,我们就以非渐近的方式恢复由中心极限定理规定的渐近速率。此外,我们的结果适用于高维设置,因为阈值样本量表现出对维度的最佳依赖(直至对数因子)。一般设置允许我们在重尾情况下恢复多元均值估计和线性回归的最新结果,并证明了投资组合优化问题的第一个尖锐的非渐近结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Monte-Carlo methods in convex stochastic optimization
We develop a novel procedure for estimating the optimizer of general convex stochastic optimization problems of the form minx∈X E[F (x, ξ)], when the given data is a finite independent sample selected according to ξ. The procedure is based on a median-of-means tournament, and is the first procedure that exhibits the optimal statistical performance in heavy tailed situations: we recover the asymptotic rates dictated by the central limit theorem in a non-asymptotic manner once the sample size exceeds some explicitly computable threshold. Additionally, our results apply in the high-dimensional setup, as the threshold sample size exhibits the optimal dependence on the dimension (up to a logarithmic factor). The general setting allows us to recover recent results on multivariate mean estimation and linear regression in heavy-tailed situations and to prove the first sharp, non-asymptotic results for the portfolio optimization problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信