矩阵群适当共紧作用的等变Poincaré对偶

IF 0.7 2区 数学 Q2 MATHEMATICS
Haoyang Guo, V. Mathai
{"title":"矩阵群适当共紧作用的等变Poincaré对偶","authors":"Haoyang Guo, V. Mathai","doi":"10.4171/jncg/468","DOIUrl":null,"url":null,"abstract":"Let $G$ be a linear Lie group acting properly and isometrically on a $G$-spin$^c$ manifold $M$ with compact quotient. We show that Poincare duality holds between $G$-equivariant $K$-theory of $M$, defined using finite-dimensional $G$-vector bundles, and $G$-equivariant $K$-homology of $M$, defined through the geometric model of Baum and Douglas.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An equivariant Poincaré duality for proper cocompact actions by matrix groups\",\"authors\":\"Haoyang Guo, V. Mathai\",\"doi\":\"10.4171/jncg/468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a linear Lie group acting properly and isometrically on a $G$-spin$^c$ manifold $M$ with compact quotient. We show that Poincare duality holds between $G$-equivariant $K$-theory of $M$, defined using finite-dimensional $G$-vector bundles, and $G$-equivariant $K$-homology of $M$, defined through the geometric model of Baum and Douglas.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/468\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/468","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$G$是一个线性李群,它在具有紧致商的$G$-自旋$^c$流形$M$上正等距作用。我们证明了Poincare对偶在$G$的$G$-等变$K$-理论和$M$的$G-等变$K$-同调之间成立,这两个理论是用有限维$G$向量丛定义的,这两种理论是用Baum和Douglas的几何模型定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An equivariant Poincaré duality for proper cocompact actions by matrix groups
Let $G$ be a linear Lie group acting properly and isometrically on a $G$-spin$^c$ manifold $M$ with compact quotient. We show that Poincare duality holds between $G$-equivariant $K$-theory of $M$, defined using finite-dimensional $G$-vector bundles, and $G$-equivariant $K$-homology of $M$, defined through the geometric model of Baum and Douglas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信