提出了一种利用合成激光成像测量高弯曲刚度连续长丝纱线单丝直径的简单方法

IF 1.9 4区 材料科学 Q3 Materials Science
Xi Wang, Shiqin Liao, Lizhu Hu, Pei Xiao, Peijian Du
{"title":"提出了一种利用合成激光成像测量高弯曲刚度连续长丝纱线单丝直径的简单方法","authors":"Xi Wang, Shiqin Liao, Lizhu Hu, Pei Xiao, Peijian Du","doi":"10.1515/secm-2022-0157","DOIUrl":null,"url":null,"abstract":"Abstract The uniformity of the monofilament diameter plays a key role in the performance of continuous filament yarns and their subsequent products. However, traditional methods for measuring fiber or filament diameters focus on estimating the arithmetic mean data, and only part of the diameter data can be obtained. Additionally, most of these traditional methods require complex sample preparations, such as by making cross-sectional slice samples. This study intends to present a simple method for measuring almost all of the monofilament diameters in a single yarn. It is not necessary to make slice samples. After the yarn sample or fabric sample is taken and prepared, synthetic laser images can be obtained directly by scanning the cross section of the sample with a 3D laser scanning confocal microscope. According to the results of many experiments, more than 90% of the monofilament diameters of a single yarn can be measured. The result also shows that the difference in the diameter data between the traditional method and the synthetic laser imaging method is less than 2%. This method presents the differences between the majority of monofilament diameters, and the yarn clustering property can be evaluated by the sum of the monofilament diameters and the yarn cross-sectional area.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":"29 1","pages":"312 - 321"},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A simple method for measuring the monofilament diameter of continuous filament yarn with high bending stiffness via synthetic laser imaging\",\"authors\":\"Xi Wang, Shiqin Liao, Lizhu Hu, Pei Xiao, Peijian Du\",\"doi\":\"10.1515/secm-2022-0157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The uniformity of the monofilament diameter plays a key role in the performance of continuous filament yarns and their subsequent products. However, traditional methods for measuring fiber or filament diameters focus on estimating the arithmetic mean data, and only part of the diameter data can be obtained. Additionally, most of these traditional methods require complex sample preparations, such as by making cross-sectional slice samples. This study intends to present a simple method for measuring almost all of the monofilament diameters in a single yarn. It is not necessary to make slice samples. After the yarn sample or fabric sample is taken and prepared, synthetic laser images can be obtained directly by scanning the cross section of the sample with a 3D laser scanning confocal microscope. According to the results of many experiments, more than 90% of the monofilament diameters of a single yarn can be measured. The result also shows that the difference in the diameter data between the traditional method and the synthetic laser imaging method is less than 2%. This method presents the differences between the majority of monofilament diameters, and the yarn clustering property can be evaluated by the sum of the monofilament diameters and the yarn cross-sectional area.\",\"PeriodicalId\":21480,\"journal\":{\"name\":\"Science and Engineering of Composite Materials\",\"volume\":\"29 1\",\"pages\":\"312 - 321\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Engineering of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/secm-2022-0157\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0157","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

摘要

摘要单丝直径的均匀性对连续长丝及其后续产品的性能起着至关重要的作用。然而,传统的测量纤维或长丝直径的方法侧重于估计算术平均值数据,只能获得部分直径数据。此外,大多数这些传统方法需要复杂的样品制备,例如通过制作横截面切片样品。本研究旨在提供一种简单的方法来测量一根纱线中几乎所有单丝的直径。不需要做切片样品。纱线样品或织物样品采集制备后,利用三维激光扫描共聚焦显微镜对样品的横截面进行扫描,可直接获得合成激光图像。根据多次实验的结果,可以测量出90%以上的单根纱线的单丝直径。结果还表明,传统方法与合成激光成像方法的直径数据差异小于2%。该方法利用了大多数单丝直径之间的差异,并用单丝直径与纱线截面积之和来评价纱线的聚类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple method for measuring the monofilament diameter of continuous filament yarn with high bending stiffness via synthetic laser imaging
Abstract The uniformity of the monofilament diameter plays a key role in the performance of continuous filament yarns and their subsequent products. However, traditional methods for measuring fiber or filament diameters focus on estimating the arithmetic mean data, and only part of the diameter data can be obtained. Additionally, most of these traditional methods require complex sample preparations, such as by making cross-sectional slice samples. This study intends to present a simple method for measuring almost all of the monofilament diameters in a single yarn. It is not necessary to make slice samples. After the yarn sample or fabric sample is taken and prepared, synthetic laser images can be obtained directly by scanning the cross section of the sample with a 3D laser scanning confocal microscope. According to the results of many experiments, more than 90% of the monofilament diameters of a single yarn can be measured. The result also shows that the difference in the diameter data between the traditional method and the synthetic laser imaging method is less than 2%. This method presents the differences between the majority of monofilament diameters, and the yarn clustering property can be evaluated by the sum of the monofilament diameters and the yarn cross-sectional area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Engineering of Composite Materials
Science and Engineering of Composite Materials 工程技术-材料科学:复合
CiteScore
3.10
自引率
5.30%
发文量
0
审稿时长
4 months
期刊介绍: Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信