具有记忆的时变对流-扩散-反应方程的有限体积元逼近

IF 1.1 Q2 MATHEMATICS, APPLIED
Anas Rachid, M. Bahaj, R. Fakhar
{"title":"具有记忆的时变对流-扩散-反应方程的有限体积元逼近","authors":"Anas Rachid, M. Bahaj, R. Fakhar","doi":"10.22034/CMDE.2020.30193.1447","DOIUrl":null,"url":null,"abstract":"Error estimates for element schemes for time-dependent for convection-diffusion-reaction equations with memory are derived and stated. For the spatially discrete scheme, optimal order error estimates in $L^{2},$ $H^{1}, $ and $W^{1,p }$ norms for $2leq p <infty ,$ are obtained. Inthis paper, we also study the lumped mass modification. Based on the Crank-Nicolson method, a time discretization scheme is discussed and related error estimates are derived.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finite Volume Element Approximation For Time-dependent Convection-Diffusion-ReactionEquations With Memory\",\"authors\":\"Anas Rachid, M. Bahaj, R. Fakhar\",\"doi\":\"10.22034/CMDE.2020.30193.1447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Error estimates for element schemes for time-dependent for convection-diffusion-reaction equations with memory are derived and stated. For the spatially discrete scheme, optimal order error estimates in $L^{2},$ $H^{1}, $ and $W^{1,p }$ norms for $2leq p <infty ,$ are obtained. Inthis paper, we also study the lumped mass modification. Based on the Crank-Nicolson method, a time discretization scheme is discussed and related error estimates are derived.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.30193.1447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.30193.1447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

导出并说明了具有记忆的对流扩散反应方程的含时单元格式的误差估计。对于空间离散格式,获得了$2leq p本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Finite Volume Element Approximation For Time-dependent Convection-Diffusion-ReactionEquations With Memory
Error estimates for element schemes for time-dependent for convection-diffusion-reaction equations with memory are derived and stated. For the spatially discrete scheme, optimal order error estimates in $L^{2},$ $H^{1}, $ and $W^{1,p }$ norms for $2leq p
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信