爆炸荷载下混凝土和钢筋的模型

Q3 Engineering
N.G. Kelasyev, K. Avdeev, D. Levin, M. V. Lisanov, V. Bobrov
{"title":"爆炸荷载下混凝土和钢筋的模型","authors":"N.G. Kelasyev, K. Avdeev, D. Levin, M. V. Lisanov, V. Bobrov","doi":"10.24000/0409-2961-2023-3-14-21","DOIUrl":null,"url":null,"abstract":"In this article, the mathematical models of structural materials describing their dynamic properties are considered for calculating building structures for the action of dynamic loads. Physical and mechanical properties are described related to reinforcing steel and concrete under the action of explosive loads, as well as the influence of the loading rate and other factors on the deformation diagram of steel and concrete. The analysis is carried out concerning the reasons for the increase in the resistance of concrete and reinforcement under rapidly increasing loads. The relevance of the topic is determined by its compliance with the main goals and objectives of the Russian state policy in the field of improving the safety of buildings and structures when exposed to explosive loads. The article describes the methods of mathematical description of the structural materials behavior under the action of explosive loads. A simplified method for modeling the dynamic properties of reinforcing steel and concrete by multiplying the calculated resistance by the dynamic strengthening factor, as well as a more time-consuming method based on the equations of gas-hydrodynamics and implemented in the LS-DYNA software package, are considered. The authors used the method of taking into account the dynamic strengthening of reinforcing steel and concrete based on the nonlinear behavior of materials using diagrams with a piecewise linear description. Dynamic hardening was considered using hardening factors. The purpose of the study is to compare the results of numerical calculation according to the method proposed by the authors with the data obtained during the experimental program Blind Blast Test. The calculation was carried out by the finite element method using the Lira 10.12 calculation complex. The DYNAMICS+ system was used to simulate the load from the action of an external explosion. The experimental model is a reinforced concrete slab reinforced with ASTM Grade 60#3 rods. The results of numerical calculation showed high convergence with the experimental program. The use of the method of accounting for the dynamic hardening of reinforcing steel and concrete, based on the nonlinear behavior of materials using diagrams with a piecewise linear description, is the most optimal model that allows to get a fairly accurate solution and at the same time is acceptable from the point of view of labor intensity. This article is of interest to design engineers engaged in the calculation of structures for explosive loads.","PeriodicalId":35650,"journal":{"name":"Bezopasnost'' Truda v Promyshlennosti","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Models of Concrete and Reinforcement under Explosive Loads\",\"authors\":\"N.G. Kelasyev, K. Avdeev, D. Levin, M. V. Lisanov, V. Bobrov\",\"doi\":\"10.24000/0409-2961-2023-3-14-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the mathematical models of structural materials describing their dynamic properties are considered for calculating building structures for the action of dynamic loads. Physical and mechanical properties are described related to reinforcing steel and concrete under the action of explosive loads, as well as the influence of the loading rate and other factors on the deformation diagram of steel and concrete. The analysis is carried out concerning the reasons for the increase in the resistance of concrete and reinforcement under rapidly increasing loads. The relevance of the topic is determined by its compliance with the main goals and objectives of the Russian state policy in the field of improving the safety of buildings and structures when exposed to explosive loads. The article describes the methods of mathematical description of the structural materials behavior under the action of explosive loads. A simplified method for modeling the dynamic properties of reinforcing steel and concrete by multiplying the calculated resistance by the dynamic strengthening factor, as well as a more time-consuming method based on the equations of gas-hydrodynamics and implemented in the LS-DYNA software package, are considered. The authors used the method of taking into account the dynamic strengthening of reinforcing steel and concrete based on the nonlinear behavior of materials using diagrams with a piecewise linear description. Dynamic hardening was considered using hardening factors. The purpose of the study is to compare the results of numerical calculation according to the method proposed by the authors with the data obtained during the experimental program Blind Blast Test. The calculation was carried out by the finite element method using the Lira 10.12 calculation complex. The DYNAMICS+ system was used to simulate the load from the action of an external explosion. The experimental model is a reinforced concrete slab reinforced with ASTM Grade 60#3 rods. The results of numerical calculation showed high convergence with the experimental program. The use of the method of accounting for the dynamic hardening of reinforcing steel and concrete, based on the nonlinear behavior of materials using diagrams with a piecewise linear description, is the most optimal model that allows to get a fairly accurate solution and at the same time is acceptable from the point of view of labor intensity. This article is of interest to design engineers engaged in the calculation of structures for explosive loads.\",\"PeriodicalId\":35650,\"journal\":{\"name\":\"Bezopasnost'' Truda v Promyshlennosti\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bezopasnost'' Truda v Promyshlennosti\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24000/0409-2961-2023-3-14-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bezopasnost'' Truda v Promyshlennosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24000/0409-2961-2023-3-14-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了结构材料描述其动态特性的数学模型,用于计算动态荷载作用下的建筑结构。介绍了钢筋和混凝土在爆炸荷载作用下的物理力学性能,以及荷载率等因素对钢筋和混凝土变形图的影响。分析了在荷载快速增加的情况下,混凝土和钢筋的阻力增加的原因。该主题的相关性取决于其是否符合俄罗斯国家政策在提高建筑物和构筑物暴露于爆炸载荷时的安全性方面的主要目标和目的。本文介绍了结构材料在爆炸载荷作用下行为的数学描述方法。考虑了一种通过将计算阻力乘以动态加固因子来模拟钢筋和混凝土动态特性的简化方法,以及一种基于气体流体动力学方程并在LS-DYNA软件包中实现的更耗时的方法。作者使用了基于材料非线性行为的考虑钢筋和混凝土动态加固的方法,使用了具有分段线性描述的图表。使用硬化因子考虑动态硬化。本研究的目的是将作者提出的方法的数值计算结果与盲爆试验程序中获得的数据进行比较。使用Lira 10.12计算复合体,采用有限元法进行计算。DYNAMICS+系统用于模拟外部爆炸作用产生的载荷。实验模型是用ASTM等级60#3钢筋加固的钢筋混凝土板。数值计算结果与实验程序具有较高的收敛性。基于材料的非线性行为,使用具有分段线性描述的图表,使用钢筋和混凝土的动态硬化方法是最优化的模型,可以获得相当准确的解,同时从劳动强度的角度来看也是可以接受的。这篇文章对从事爆炸荷载结构计算的设计工程师很感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Models of Concrete and Reinforcement under Explosive Loads
In this article, the mathematical models of structural materials describing their dynamic properties are considered for calculating building structures for the action of dynamic loads. Physical and mechanical properties are described related to reinforcing steel and concrete under the action of explosive loads, as well as the influence of the loading rate and other factors on the deformation diagram of steel and concrete. The analysis is carried out concerning the reasons for the increase in the resistance of concrete and reinforcement under rapidly increasing loads. The relevance of the topic is determined by its compliance with the main goals and objectives of the Russian state policy in the field of improving the safety of buildings and structures when exposed to explosive loads. The article describes the methods of mathematical description of the structural materials behavior under the action of explosive loads. A simplified method for modeling the dynamic properties of reinforcing steel and concrete by multiplying the calculated resistance by the dynamic strengthening factor, as well as a more time-consuming method based on the equations of gas-hydrodynamics and implemented in the LS-DYNA software package, are considered. The authors used the method of taking into account the dynamic strengthening of reinforcing steel and concrete based on the nonlinear behavior of materials using diagrams with a piecewise linear description. Dynamic hardening was considered using hardening factors. The purpose of the study is to compare the results of numerical calculation according to the method proposed by the authors with the data obtained during the experimental program Blind Blast Test. The calculation was carried out by the finite element method using the Lira 10.12 calculation complex. The DYNAMICS+ system was used to simulate the load from the action of an external explosion. The experimental model is a reinforced concrete slab reinforced with ASTM Grade 60#3 rods. The results of numerical calculation showed high convergence with the experimental program. The use of the method of accounting for the dynamic hardening of reinforcing steel and concrete, based on the nonlinear behavior of materials using diagrams with a piecewise linear description, is the most optimal model that allows to get a fairly accurate solution and at the same time is acceptable from the point of view of labor intensity. This article is of interest to design engineers engaged in the calculation of structures for explosive loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bezopasnost'' Truda v Promyshlennosti
Bezopasnost'' Truda v Promyshlennosti Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信