Ulrich模的复杂性和刚性及其应用

Pub Date : 2022-01-04 DOI:10.7146/math.scand.a-136499
Souvik Dey, D. Ghosh
{"title":"Ulrich模的复杂性和刚性及其应用","authors":"Souvik Dey, D. Ghosh","doi":"10.7146/math.scand.a-136499","DOIUrl":null,"url":null,"abstract":"We analyze whether Ulrich modules, not necessarily maximal CM (Cohen-Macaulay), can be used as test modules, which detect finite homological dimensions of modules. We prove that Ulrich modules over CM local rings have maximal complexity and curvature. Various new characterizations of local rings are provided in terms of Ulrich modules. We show that every Ulrich module of dimension $s$ over a local ring is $(s+1)$-Tor-rigid-test, but not $s$−Tor-rigid in general (where $s\\ge 1$). Over a deformation of a CM local ring of minimal multiplicity, we also study Tor rigidity.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Complexity and rigidity of Ulrich modules, and some applications\",\"authors\":\"Souvik Dey, D. Ghosh\",\"doi\":\"10.7146/math.scand.a-136499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze whether Ulrich modules, not necessarily maximal CM (Cohen-Macaulay), can be used as test modules, which detect finite homological dimensions of modules. We prove that Ulrich modules over CM local rings have maximal complexity and curvature. Various new characterizations of local rings are provided in terms of Ulrich modules. We show that every Ulrich module of dimension $s$ over a local ring is $(s+1)$-Tor-rigid-test, but not $s$−Tor-rigid in general (where $s\\\\ge 1$). Over a deformation of a CM local ring of minimal multiplicity, we also study Tor rigidity.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-136499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-136499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们分析了Ulrich模块是否可以作为检测模块有限同调维数的测试模块,而不一定是极大CM (Cohen-Macaulay)。证明了CM局部环上的Ulrich模具有最大的复杂度和曲率。利用Ulrich模给出了局部环的各种新的表征。我们证明了局部环上每一个维数$s$的Ulrich模都是$(s+1)$-Tor-rigid-test,而不是一般的$s$ -Tor-rigid(其中$s\ge 1$)。在最小复数CM局部环的变形上,我们也研究了其刚性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Complexity and rigidity of Ulrich modules, and some applications
We analyze whether Ulrich modules, not necessarily maximal CM (Cohen-Macaulay), can be used as test modules, which detect finite homological dimensions of modules. We prove that Ulrich modules over CM local rings have maximal complexity and curvature. Various new characterizations of local rings are provided in terms of Ulrich modules. We show that every Ulrich module of dimension $s$ over a local ring is $(s+1)$-Tor-rigid-test, but not $s$−Tor-rigid in general (where $s\ge 1$). Over a deformation of a CM local ring of minimal multiplicity, we also study Tor rigidity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信