{"title":"Dirichlet拉普拉斯算子的一个反量化等周型不等式","authors":"Gloria Paoli","doi":"10.4171/rlm/973","DOIUrl":null,"url":null,"abstract":"A stability result in terms of the perimeter is obtained for the first Dirichlet eigenvalue of the Laplacian operator. In particular, we prove that, once we fix the dimension n ě 2, there exists a constant c ą 0, depending only on n, such that, for every Ω Ă R open, bounded and convex set with volume equal to the volume of a ball B with radius 1, it holds λ1pΩq ́ λ1pBq ě c pP pΩq ́ P pBqq , where by λ1p ̈q we denote the first Dirichlet eigenvalue of a set and by P p ̈q its perimeter. The hearth of the present paper is a sharp estimate of the Fraenkel asymmetry in terms of the perimeter. MSC 2020: 35J05, 35J57, 52A27","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A reverse quantitative isoperimetric type inequality for the Dirichlet Laplacian\",\"authors\":\"Gloria Paoli\",\"doi\":\"10.4171/rlm/973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A stability result in terms of the perimeter is obtained for the first Dirichlet eigenvalue of the Laplacian operator. In particular, we prove that, once we fix the dimension n ě 2, there exists a constant c ą 0, depending only on n, such that, for every Ω Ă R open, bounded and convex set with volume equal to the volume of a ball B with radius 1, it holds λ1pΩq ́ λ1pBq ě c pP pΩq ́ P pBqq , where by λ1p ̈q we denote the first Dirichlet eigenvalue of a set and by P p ̈q its perimeter. The hearth of the present paper is a sharp estimate of the Fraenkel asymmetry in terms of the perimeter. MSC 2020: 35J05, 35J57, 52A27\",\"PeriodicalId\":54497,\"journal\":{\"name\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rlm/973\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/973","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A reverse quantitative isoperimetric type inequality for the Dirichlet Laplacian
A stability result in terms of the perimeter is obtained for the first Dirichlet eigenvalue of the Laplacian operator. In particular, we prove that, once we fix the dimension n ě 2, there exists a constant c ą 0, depending only on n, such that, for every Ω Ă R open, bounded and convex set with volume equal to the volume of a ball B with radius 1, it holds λ1pΩq ́ λ1pBq ě c pP pΩq ́ P pBqq , where by λ1p ̈q we denote the first Dirichlet eigenvalue of a set and by P p ̈q its perimeter. The hearth of the present paper is a sharp estimate of the Fraenkel asymmetry in terms of the perimeter. MSC 2020: 35J05, 35J57, 52A27
期刊介绍:
The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.