{"title":"一种多尺度四维变分数据同化方案——以Squall线为例","authors":"Tao Sun, Juanzhen Sun, Yaodeng Chen, Haiqin Chen","doi":"10.1175/mwr-d-22-0292.1","DOIUrl":null,"url":null,"abstract":"\nThis study presents a multiscale four-dimensional variational data assimilation (MS-4DVar) scheme that aims to assimilate multiscale information from conventional and radar observations. The MS-4DVar scheme separately assimilates conventional and radar data in different outer loop iterations of an incremental 4DVar with varied resolutions in the tangent linear and adjoint models (TLM/ADM) and time window lengths in the 4DVar. The MS-4DVar scheme was evaluated through a series of single observation tests and several cycled assimilation and forecasting experiments for a real squall line case. Our results indicated that different TLM/ADM resolutions and time window lengths applied to the conventional and radar observations improved the multiscale analysis. In addition, the MS-4DVar scheme was more efficient than the common 4DVar because of the low-resolution TLM/ADM used for conventional data and the shortened time window length for radar data. Verification of the squall line forecasts suggested that the MS-4DVar scheme improved the hourly accumulated precipitation and radar reflectivity forecast skills and reduced the forecast errors of both largescale environmental and convective-scale states. Further diagnosis revealed that the improvement of precipitation forecast skill was attributable to the stronger cold pool, deeper saturated water vapor layer, and stronger updraft of the simulated squall line system, as well as a more favorable convective environment.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multiscale Four-dimensional Variational Data Assimilation Scheme: A Squall Line Case Study\",\"authors\":\"Tao Sun, Juanzhen Sun, Yaodeng Chen, Haiqin Chen\",\"doi\":\"10.1175/mwr-d-22-0292.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThis study presents a multiscale four-dimensional variational data assimilation (MS-4DVar) scheme that aims to assimilate multiscale information from conventional and radar observations. The MS-4DVar scheme separately assimilates conventional and radar data in different outer loop iterations of an incremental 4DVar with varied resolutions in the tangent linear and adjoint models (TLM/ADM) and time window lengths in the 4DVar. The MS-4DVar scheme was evaluated through a series of single observation tests and several cycled assimilation and forecasting experiments for a real squall line case. Our results indicated that different TLM/ADM resolutions and time window lengths applied to the conventional and radar observations improved the multiscale analysis. In addition, the MS-4DVar scheme was more efficient than the common 4DVar because of the low-resolution TLM/ADM used for conventional data and the shortened time window length for radar data. Verification of the squall line forecasts suggested that the MS-4DVar scheme improved the hourly accumulated precipitation and radar reflectivity forecast skills and reduced the forecast errors of both largescale environmental and convective-scale states. Further diagnosis revealed that the improvement of precipitation forecast skill was attributable to the stronger cold pool, deeper saturated water vapor layer, and stronger updraft of the simulated squall line system, as well as a more favorable convective environment.\",\"PeriodicalId\":18824,\"journal\":{\"name\":\"Monthly Weather Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Weather Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-22-0292.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-22-0292.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
A Multiscale Four-dimensional Variational Data Assimilation Scheme: A Squall Line Case Study
This study presents a multiscale four-dimensional variational data assimilation (MS-4DVar) scheme that aims to assimilate multiscale information from conventional and radar observations. The MS-4DVar scheme separately assimilates conventional and radar data in different outer loop iterations of an incremental 4DVar with varied resolutions in the tangent linear and adjoint models (TLM/ADM) and time window lengths in the 4DVar. The MS-4DVar scheme was evaluated through a series of single observation tests and several cycled assimilation and forecasting experiments for a real squall line case. Our results indicated that different TLM/ADM resolutions and time window lengths applied to the conventional and radar observations improved the multiscale analysis. In addition, the MS-4DVar scheme was more efficient than the common 4DVar because of the low-resolution TLM/ADM used for conventional data and the shortened time window length for radar data. Verification of the squall line forecasts suggested that the MS-4DVar scheme improved the hourly accumulated precipitation and radar reflectivity forecast skills and reduced the forecast errors of both largescale environmental and convective-scale states. Further diagnosis revealed that the improvement of precipitation forecast skill was attributable to the stronger cold pool, deeper saturated water vapor layer, and stronger updraft of the simulated squall line system, as well as a more favorable convective environment.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.