Kanai Tajimi地震动激励下用有限差分格式离散的拉伸梁的概率解

IF 1.1 4区 工程技术 Q3 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
G. Er, V. Iu, Hai-En Du
{"title":"Kanai Tajimi地震动激励下用有限差分格式离散的拉伸梁的概率解","authors":"G. Er, V. Iu, Hai-En Du","doi":"10.24423/AOM.3145","DOIUrl":null,"url":null,"abstract":"The probabilistic solutions of the elastic stretched beam are studied under the excitation of Kanai–Tajimi ground motion. Finite difference scheme is adopted to formulate the nonlinear multi-degree-of-freedom system about the random vibration of the beam. The state-space-split is employed to make the high-dimensional Fokker–Planck–Kolmogorov equation reduced to 4-dimensional Fokker–Planck–Kolmogorov equations which are solved by the exponential polynomial closure method for the probabilistic solutions of the system responses. The rules for selecting the state variables are proposed in order to reduce the dimensionality of Fokker–Planck–Kolmogorov equation by the state-space-split method. The numerical results obtained by the state-space-split and exponential polynomial closure method, Monte Carlo simulation method, and equivalent linearization method are presented and compared to show the computational efficiency and numerical accuracy of the state-space-split and exponential polynomial closure method in analyzing the probabilistic solutions of the strongly nonlinear stretched beam systems formulated by a finite difference scheme and excited by the Kanai–Tajimi ground motion.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Probabilistic solutions of a stretched beam discretized with finite difference scheme and excited by Kanai-Tajimi ground motion\",\"authors\":\"G. Er, V. Iu, Hai-En Du\",\"doi\":\"10.24423/AOM.3145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The probabilistic solutions of the elastic stretched beam are studied under the excitation of Kanai–Tajimi ground motion. Finite difference scheme is adopted to formulate the nonlinear multi-degree-of-freedom system about the random vibration of the beam. The state-space-split is employed to make the high-dimensional Fokker–Planck–Kolmogorov equation reduced to 4-dimensional Fokker–Planck–Kolmogorov equations which are solved by the exponential polynomial closure method for the probabilistic solutions of the system responses. The rules for selecting the state variables are proposed in order to reduce the dimensionality of Fokker–Planck–Kolmogorov equation by the state-space-split method. The numerical results obtained by the state-space-split and exponential polynomial closure method, Monte Carlo simulation method, and equivalent linearization method are presented and compared to show the computational efficiency and numerical accuracy of the state-space-split and exponential polynomial closure method in analyzing the probabilistic solutions of the strongly nonlinear stretched beam systems formulated by a finite difference scheme and excited by the Kanai–Tajimi ground motion.\",\"PeriodicalId\":8280,\"journal\":{\"name\":\"Archives of Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24423/AOM.3145\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.3145","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 8

摘要

研究了在Kanai–Tajimi地震动激励下弹性拉伸梁的概率解。采用有限差分格式建立了梁随机振动的非线性多自由度系统。利用状态空间分裂将高维Fokker–Planck–Kolmogorov方程简化为4维Fokker-Planck–Colmogorov方程式,并用指数多项式闭包法求解系统响应的概率解。为了利用状态空间分裂方法降低Fokker–Planck–Kolmogorov方程的维数,提出了状态变量的选择规则。利用状态空间分裂和指数多项式闭包方法、蒙特卡罗模拟方法和数值模拟方法,和等效线性化方法进行了比较,以表明状态空间分裂和指数多项式闭合方法在分析Kanai–Tajimi地面运动激发的强非线性拉伸梁系统的概率解时的计算效率和数值精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic solutions of a stretched beam discretized with finite difference scheme and excited by Kanai-Tajimi ground motion
The probabilistic solutions of the elastic stretched beam are studied under the excitation of Kanai–Tajimi ground motion. Finite difference scheme is adopted to formulate the nonlinear multi-degree-of-freedom system about the random vibration of the beam. The state-space-split is employed to make the high-dimensional Fokker–Planck–Kolmogorov equation reduced to 4-dimensional Fokker–Planck–Kolmogorov equations which are solved by the exponential polynomial closure method for the probabilistic solutions of the system responses. The rules for selecting the state variables are proposed in order to reduce the dimensionality of Fokker–Planck–Kolmogorov equation by the state-space-split method. The numerical results obtained by the state-space-split and exponential polynomial closure method, Monte Carlo simulation method, and equivalent linearization method are presented and compared to show the computational efficiency and numerical accuracy of the state-space-split and exponential polynomial closure method in analyzing the probabilistic solutions of the strongly nonlinear stretched beam systems formulated by a finite difference scheme and excited by the Kanai–Tajimi ground motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Mechanics
Archives of Mechanics 工程技术-材料科学:表征与测试
CiteScore
1.40
自引率
12.50%
发文量
0
审稿时长
>12 weeks
期刊介绍: Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on: -mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities; -methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems; -dynamics of material systems; -fluid flows and interactions with solids. Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above. The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc. Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信