{"title":"基于轻量级双峰网络的补丁拼接数据增强单幅图像超分辨率","authors":"Quoc Toan Nguyen, Tang Quang Hieu","doi":"10.4108/eetinis.v10i2.2774","DOIUrl":null,"url":null,"abstract":"With the advancement of deep learning, single-image super-resolution (SISR) has made significant strides. However, most current SISR methods are challenging to employ in real-world applications because they are doubtlessly employed by substantial computational and memory costs caused by complex operations. Furthermore, an efficient dataset is a key factor for bettering model training. The hybrid models of CNN and Vision Transformer can be more efficient in the SISR task. Nevertheless, they require substantial or extremely high-quality datasets for training that could be unavailable from time to time. To tackle these issues, a solution combined by applying a Lightweight Bimodal Network (LBNet) and Patch-Mosaic data augmentation method which is the enhancement of CutMix and YOCO is proposed in this research. With patch-oriented Mosaic data augmentation, an efficient Symmetric CNN is utilized for local feature extraction and coarse image restoration. Plus, a Recursive Transformer aids in fully grasping the long-term dependence of images, enabling the global information to be fully used to refine texture details. Extensive experiments have shown that LBNet with the proposed data augmentation with zero-free additional parameters method outperforms the original LBNet and other state-of-the-art techniques in which image-level data augmentation is applied.","PeriodicalId":33474,"journal":{"name":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing Single-Image Super-Resolution using Patch-Mosaic Data Augmentation on Lightweight Bimodal Network\",\"authors\":\"Quoc Toan Nguyen, Tang Quang Hieu\",\"doi\":\"10.4108/eetinis.v10i2.2774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of deep learning, single-image super-resolution (SISR) has made significant strides. However, most current SISR methods are challenging to employ in real-world applications because they are doubtlessly employed by substantial computational and memory costs caused by complex operations. Furthermore, an efficient dataset is a key factor for bettering model training. The hybrid models of CNN and Vision Transformer can be more efficient in the SISR task. Nevertheless, they require substantial or extremely high-quality datasets for training that could be unavailable from time to time. To tackle these issues, a solution combined by applying a Lightweight Bimodal Network (LBNet) and Patch-Mosaic data augmentation method which is the enhancement of CutMix and YOCO is proposed in this research. With patch-oriented Mosaic data augmentation, an efficient Symmetric CNN is utilized for local feature extraction and coarse image restoration. Plus, a Recursive Transformer aids in fully grasping the long-term dependence of images, enabling the global information to be fully used to refine texture details. Extensive experiments have shown that LBNet with the proposed data augmentation with zero-free additional parameters method outperforms the original LBNet and other state-of-the-art techniques in which image-level data augmentation is applied.\",\"PeriodicalId\":33474,\"journal\":{\"name\":\"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetinis.v10i2.2774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetinis.v10i2.2774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Enhancing Single-Image Super-Resolution using Patch-Mosaic Data Augmentation on Lightweight Bimodal Network
With the advancement of deep learning, single-image super-resolution (SISR) has made significant strides. However, most current SISR methods are challenging to employ in real-world applications because they are doubtlessly employed by substantial computational and memory costs caused by complex operations. Furthermore, an efficient dataset is a key factor for bettering model training. The hybrid models of CNN and Vision Transformer can be more efficient in the SISR task. Nevertheless, they require substantial or extremely high-quality datasets for training that could be unavailable from time to time. To tackle these issues, a solution combined by applying a Lightweight Bimodal Network (LBNet) and Patch-Mosaic data augmentation method which is the enhancement of CutMix and YOCO is proposed in this research. With patch-oriented Mosaic data augmentation, an efficient Symmetric CNN is utilized for local feature extraction and coarse image restoration. Plus, a Recursive Transformer aids in fully grasping the long-term dependence of images, enabling the global information to be fully used to refine texture details. Extensive experiments have shown that LBNet with the proposed data augmentation with zero-free additional parameters method outperforms the original LBNet and other state-of-the-art techniques in which image-level data augmentation is applied.