光合微生物,概述其对植物的生物刺激素作用及其对空间农业的展望

IF 2.6 3区 生物学 Q2 PLANT SCIENCES
Cécile Renaud, N. Leys, R. Wattiez
{"title":"光合微生物,概述其对植物的生物刺激素作用及其对空间农业的展望","authors":"Cécile Renaud, N. Leys, R. Wattiez","doi":"10.1080/17429145.2023.2242697","DOIUrl":null,"url":null,"abstract":"ABSTRACT The space environment is extreme for plants growth and survival as gravity (gravitropism modification, water distribution), radiations (mutations enhancers), light spectrum regime and temperature are not optimal. Photosynthetic microorganisms are a foreseen solution for supporting plant development, growth, and stress tolerance in closed environments, like those designed for space colonisation. Indeed, photosynthetic microorganisms are known as secondary metabolites producers (exopolysaccharides, indole alkaloids, fertilisers) able to impact plant stimulation. Studying their abilities, application methodologies and best strains for space agriculture may lead to developing a sustainable and efficient approach for food production. Furthermore, as these microorganisms could also be used to produce oxygen and recycle waste materials increasing their interest in closed loop systems is undeniable. In this review we provide an overview of the current state of knowledge about existing biostimulants, their effects and applications, and the potential brought by photosynthetic microorganisms for life in closed environments. Highlights Cyanobacteria's and microalgae's secondary metabolites can act as biostimulants for vascular plants when applied to the roots or the leaves. Production of secondary metabolites in cyanobacteria can be enhanced in stressful environments. Cyanobacteria can survive space-like stress by sur-producing secondary metabolites giving an advantage for space farming as a source of biostimulant compounds.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photosynthetic microorganisms, an overview of their biostimulant effects on plants and perspectives for space agriculture\",\"authors\":\"Cécile Renaud, N. Leys, R. Wattiez\",\"doi\":\"10.1080/17429145.2023.2242697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The space environment is extreme for plants growth and survival as gravity (gravitropism modification, water distribution), radiations (mutations enhancers), light spectrum regime and temperature are not optimal. Photosynthetic microorganisms are a foreseen solution for supporting plant development, growth, and stress tolerance in closed environments, like those designed for space colonisation. Indeed, photosynthetic microorganisms are known as secondary metabolites producers (exopolysaccharides, indole alkaloids, fertilisers) able to impact plant stimulation. Studying their abilities, application methodologies and best strains for space agriculture may lead to developing a sustainable and efficient approach for food production. Furthermore, as these microorganisms could also be used to produce oxygen and recycle waste materials increasing their interest in closed loop systems is undeniable. In this review we provide an overview of the current state of knowledge about existing biostimulants, their effects and applications, and the potential brought by photosynthetic microorganisms for life in closed environments. Highlights Cyanobacteria's and microalgae's secondary metabolites can act as biostimulants for vascular plants when applied to the roots or the leaves. Production of secondary metabolites in cyanobacteria can be enhanced in stressful environments. Cyanobacteria can survive space-like stress by sur-producing secondary metabolites giving an advantage for space farming as a source of biostimulant compounds.\",\"PeriodicalId\":16830,\"journal\":{\"name\":\"Journal of Plant Interactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Interactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17429145.2023.2242697\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17429145.2023.2242697","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photosynthetic microorganisms, an overview of their biostimulant effects on plants and perspectives for space agriculture
ABSTRACT The space environment is extreme for plants growth and survival as gravity (gravitropism modification, water distribution), radiations (mutations enhancers), light spectrum regime and temperature are not optimal. Photosynthetic microorganisms are a foreseen solution for supporting plant development, growth, and stress tolerance in closed environments, like those designed for space colonisation. Indeed, photosynthetic microorganisms are known as secondary metabolites producers (exopolysaccharides, indole alkaloids, fertilisers) able to impact plant stimulation. Studying their abilities, application methodologies and best strains for space agriculture may lead to developing a sustainable and efficient approach for food production. Furthermore, as these microorganisms could also be used to produce oxygen and recycle waste materials increasing their interest in closed loop systems is undeniable. In this review we provide an overview of the current state of knowledge about existing biostimulants, their effects and applications, and the potential brought by photosynthetic microorganisms for life in closed environments. Highlights Cyanobacteria's and microalgae's secondary metabolites can act as biostimulants for vascular plants when applied to the roots or the leaves. Production of secondary metabolites in cyanobacteria can be enhanced in stressful environments. Cyanobacteria can survive space-like stress by sur-producing secondary metabolites giving an advantage for space farming as a source of biostimulant compounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
6.20%
发文量
69
审稿时长
>12 weeks
期刊介绍: Journal of Plant Interactions aims to represent a common platform for those scientists interested in publishing and reading research articles in the field of plant interactions and will cover most plant interactions with the surrounding environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信