紧致边界黎曼流形调和映射的Liouville定理

IF 0.4 4区 数学 Q4 MATHEMATICS
Jun Sun, Xiaobao Zhu
{"title":"紧致边界黎曼流形调和映射的Liouville定理","authors":"Jun Sun, Xiaobao Zhu","doi":"10.2996/kmj46204","DOIUrl":null,"url":null,"abstract":"In this note we will provide a gradient estimate for harmonic maps from a complete noncompact Riemannian manifold with compact boundary (which we call\"Kasue manifold\") into a simply connected complete Riemannian manifold with non-positive sectional curvature. As a consequence, we can obtain a Liouville theorem. We will also show the nonexistence of positive solutions to some linear elliptic equation on Kasue manifold.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville Theorem for harmonic maps from Riemannian manifold with compact boundary\",\"authors\":\"Jun Sun, Xiaobao Zhu\",\"doi\":\"10.2996/kmj46204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we will provide a gradient estimate for harmonic maps from a complete noncompact Riemannian manifold with compact boundary (which we call\\\"Kasue manifold\\\") into a simply connected complete Riemannian manifold with non-positive sectional curvature. As a consequence, we can obtain a Liouville theorem. We will also show the nonexistence of positive solutions to some linear elliptic equation on Kasue manifold.\",\"PeriodicalId\":54747,\"journal\":{\"name\":\"Kodai Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2996/kmj46204\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj46204","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了边界紧致的完全非紧黎曼流形(我们称之为“Kasue流形”)到截面曲率非正的单连通完全黎曼流形调和映射的梯度估计。因此,我们可以得到一个刘维尔定理。我们还将证明Kasue流形上某些线性椭圆方程正解的不存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liouville Theorem for harmonic maps from Riemannian manifold with compact boundary
In this note we will provide a gradient estimate for harmonic maps from a complete noncompact Riemannian manifold with compact boundary (which we call"Kasue manifold") into a simply connected complete Riemannian manifold with non-positive sectional curvature. As a consequence, we can obtain a Liouville theorem. We will also show the nonexistence of positive solutions to some linear elliptic equation on Kasue manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信