Z. Rahimi, G. Rezazadeh, W. Sumelka, Xiao-jun Yang
{"title":"在非均匀非线性非局部理论框架下微纳梁在分布变压力作用下的临界点失稳研究","authors":"Z. Rahimi, G. Rezazadeh, W. Sumelka, Xiao-jun Yang","doi":"10.24423/AOM.2660","DOIUrl":null,"url":null,"abstract":"Fractional derivative models (FDMs) result from introduction of fractional derivatives (FDs) into the governing equations of the differential operator type of linear solid materials. FDMs are more general than those of integer derivative models (IDMs) so they are more fixable to describe physical phenomena. In this paper the inhomogeneous nonlocal theory has been introduced based on conformable fractional derivatives (CFD) to study the critical point instability of micro/nano beams under a distributed variable-pressure force. The phase of distributed variable-pressure force is used for electrostatic force, electromagnetic force and so on. This model has two free parameters: i) parameter to control the order of inhomogeneity in constitutive relations that gives a general form to the model, and ii) a nonlocal parameter to consider size dependence effects in micron and sub-micron scales. As a case study the theory has been used to model micro cantilever (C-F) and doubly-clamped (C-C) silicon beams under a distributed uniform electrostatic force in the presence of von-Karman nonlinearity and their static critical point (static pull-in instability), moreover, effects of different inhomogeneity have been shown on the pull-in instability.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":"69 1","pages":"413-433"},"PeriodicalIF":1.1000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A study of critical point instability of micro and nano beams under a distributed variable-pressure force in the framework of the inhomogeneous non-linear nonlocal theory\",\"authors\":\"Z. Rahimi, G. Rezazadeh, W. Sumelka, Xiao-jun Yang\",\"doi\":\"10.24423/AOM.2660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractional derivative models (FDMs) result from introduction of fractional derivatives (FDs) into the governing equations of the differential operator type of linear solid materials. FDMs are more general than those of integer derivative models (IDMs) so they are more fixable to describe physical phenomena. In this paper the inhomogeneous nonlocal theory has been introduced based on conformable fractional derivatives (CFD) to study the critical point instability of micro/nano beams under a distributed variable-pressure force. The phase of distributed variable-pressure force is used for electrostatic force, electromagnetic force and so on. This model has two free parameters: i) parameter to control the order of inhomogeneity in constitutive relations that gives a general form to the model, and ii) a nonlocal parameter to consider size dependence effects in micron and sub-micron scales. As a case study the theory has been used to model micro cantilever (C-F) and doubly-clamped (C-C) silicon beams under a distributed uniform electrostatic force in the presence of von-Karman nonlinearity and their static critical point (static pull-in instability), moreover, effects of different inhomogeneity have been shown on the pull-in instability.\",\"PeriodicalId\":8280,\"journal\":{\"name\":\"Archives of Mechanics\",\"volume\":\"69 1\",\"pages\":\"413-433\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24423/AOM.2660\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.2660","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
A study of critical point instability of micro and nano beams under a distributed variable-pressure force in the framework of the inhomogeneous non-linear nonlocal theory
Fractional derivative models (FDMs) result from introduction of fractional derivatives (FDs) into the governing equations of the differential operator type of linear solid materials. FDMs are more general than those of integer derivative models (IDMs) so they are more fixable to describe physical phenomena. In this paper the inhomogeneous nonlocal theory has been introduced based on conformable fractional derivatives (CFD) to study the critical point instability of micro/nano beams under a distributed variable-pressure force. The phase of distributed variable-pressure force is used for electrostatic force, electromagnetic force and so on. This model has two free parameters: i) parameter to control the order of inhomogeneity in constitutive relations that gives a general form to the model, and ii) a nonlocal parameter to consider size dependence effects in micron and sub-micron scales. As a case study the theory has been used to model micro cantilever (C-F) and doubly-clamped (C-C) silicon beams under a distributed uniform electrostatic force in the presence of von-Karman nonlinearity and their static critical point (static pull-in instability), moreover, effects of different inhomogeneity have been shown on the pull-in instability.
期刊介绍:
Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on:
-mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities;
-methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems;
-dynamics of material systems;
-fluid flows and interactions with solids.
Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above.
The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc.
Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.