{"title":"函子间的同伦距离","authors":"E. Macías-Virgós, D. Mosquera-Lois","doi":"10.1007/s40062-020-00269-x","DOIUrl":null,"url":null,"abstract":"<p>We introduce a notion of <i>categorical homotopic distance between functors</i> by adapting the notion of homotopic distance in topological spaces, recently defined by the authors, to the context of small categories. Moreover, this notion generalizes the work on categorical LS-category of small categories by Tanaka.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-020-00269-x","citationCount":"6","resultStr":"{\"title\":\"Homotopic distance between functors\",\"authors\":\"E. Macías-Virgós, D. Mosquera-Lois\",\"doi\":\"10.1007/s40062-020-00269-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a notion of <i>categorical homotopic distance between functors</i> by adapting the notion of homotopic distance in topological spaces, recently defined by the authors, to the context of small categories. Moreover, this notion generalizes the work on categorical LS-category of small categories by Tanaka.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-020-00269-x\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-020-00269-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-020-00269-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce a notion of categorical homotopic distance between functors by adapting the notion of homotopic distance in topological spaces, recently defined by the authors, to the context of small categories. Moreover, this notion generalizes the work on categorical LS-category of small categories by Tanaka.