函子间的同伦距离

Pub Date : 2020-10-13 DOI:10.1007/s40062-020-00269-x
E. Macías-Virgós, D. Mosquera-Lois
{"title":"函子间的同伦距离","authors":"E. Macías-Virgós,&nbsp;D. Mosquera-Lois","doi":"10.1007/s40062-020-00269-x","DOIUrl":null,"url":null,"abstract":"<p>We introduce a notion of <i>categorical homotopic distance between functors</i> by adapting the notion of homotopic distance in topological spaces, recently defined by the authors, to the context of small categories. Moreover, this notion generalizes the work on categorical LS-category of small categories by Tanaka.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-020-00269-x","citationCount":"6","resultStr":"{\"title\":\"Homotopic distance between functors\",\"authors\":\"E. Macías-Virgós,&nbsp;D. Mosquera-Lois\",\"doi\":\"10.1007/s40062-020-00269-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a notion of <i>categorical homotopic distance between functors</i> by adapting the notion of homotopic distance in topological spaces, recently defined by the authors, to the context of small categories. Moreover, this notion generalizes the work on categorical LS-category of small categories by Tanaka.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-020-00269-x\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-020-00269-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-020-00269-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们将最近由作者定义的拓扑空间中的同伦距离的概念应用于小范畴,引入了函子间的范畴同伦距离的概念。此外,这一概念还推广了田中关于小范畴的分类ls范畴的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Homotopic distance between functors

分享
查看原文
Homotopic distance between functors

We introduce a notion of categorical homotopic distance between functors by adapting the notion of homotopic distance in topological spaces, recently defined by the authors, to the context of small categories. Moreover, this notion generalizes the work on categorical LS-category of small categories by Tanaka.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信