具有近周期电磁场的二维泡利算子的谱性质

IF 1.1 2区 数学 Q1 MATHEMATICS
J. Bony, Nicolás Espinoza, G. Raikov
{"title":"具有近周期电磁场的二维泡利算子的谱性质","authors":"J. Bony, Nicolás Espinoza, G. Raikov","doi":"10.4171/PRIMS/55-3-1","DOIUrl":null,"url":null,"abstract":"We consider a 2D Pauli operator with almost periodic field $b$ and electric potential $V$. First, we study the ergodic properties of $H$ and show, in particular, that its discrete spectrum is empty if there exists a magnetic potential which generates the magnetic field $b - b_{0}$, $b_{0}$ being the mean value of $b$. Next, we assume that $V = 0$, and investigate the zero modes of $H$. As expected, if $b_{0} \\neq 0$, then generically $\\operatorname{dim} \\operatorname{Ker} H = \\infty$. If $b_{0} = 0$, then for each $m \\in {\\mathbb N} \\cup \\{ \\infty \\}$, we construct almost periodic $b$ such that $\\operatorname{dim} \\operatorname{Ker} H = m$. This construction depends strongly on results concerning the asymptotic behavior of Dirichlet series, also obtained in the present article.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/PRIMS/55-3-1","citationCount":"2","resultStr":"{\"title\":\"Spectral Properties of 2D Pauli Operators with Almost-Periodic Electromagnetic Fields\",\"authors\":\"J. Bony, Nicolás Espinoza, G. Raikov\",\"doi\":\"10.4171/PRIMS/55-3-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a 2D Pauli operator with almost periodic field $b$ and electric potential $V$. First, we study the ergodic properties of $H$ and show, in particular, that its discrete spectrum is empty if there exists a magnetic potential which generates the magnetic field $b - b_{0}$, $b_{0}$ being the mean value of $b$. Next, we assume that $V = 0$, and investigate the zero modes of $H$. As expected, if $b_{0} \\\\neq 0$, then generically $\\\\operatorname{dim} \\\\operatorname{Ker} H = \\\\infty$. If $b_{0} = 0$, then for each $m \\\\in {\\\\mathbb N} \\\\cup \\\\{ \\\\infty \\\\}$, we construct almost periodic $b$ such that $\\\\operatorname{dim} \\\\operatorname{Ker} H = m$. This construction depends strongly on results concerning the asymptotic behavior of Dirichlet series, also obtained in the present article.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/PRIMS/55-3-1\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/PRIMS/55-3-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/PRIMS/55-3-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑具有概周期场$b$和电势$V$的二维泡利算子。首先,我们研究了$H$的遍历性质,特别表明,如果存在产生磁场$b-b_{0}$的磁势,则其离散谱是空的,$b_{0}$是$b$的平均值。接下来,我们假设$V=0$,并研究$H$的零模式。正如预期的那样,如果$b_{0}\neq 0$,则一般为$\operatorname{dim}\operatorname{Ker}H=\infty$。如果$b_{0}=0$,则对于{\mathbb N}\cup\{infty}$中的每个$m\,我们构造几乎周期性的$b$,使得$\ operatorname{dim}\ operatorname{Ker}H=m$。这个构造在很大程度上依赖于关于狄利克雷级数渐近性质的结果,也在本文中得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Properties of 2D Pauli Operators with Almost-Periodic Electromagnetic Fields
We consider a 2D Pauli operator with almost periodic field $b$ and electric potential $V$. First, we study the ergodic properties of $H$ and show, in particular, that its discrete spectrum is empty if there exists a magnetic potential which generates the magnetic field $b - b_{0}$, $b_{0}$ being the mean value of $b$. Next, we assume that $V = 0$, and investigate the zero modes of $H$. As expected, if $b_{0} \neq 0$, then generically $\operatorname{dim} \operatorname{Ker} H = \infty$. If $b_{0} = 0$, then for each $m \in {\mathbb N} \cup \{ \infty \}$, we construct almost periodic $b$ such that $\operatorname{dim} \operatorname{Ker} H = m$. This construction depends strongly on results concerning the asymptotic behavior of Dirichlet series, also obtained in the present article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信