轴上图像中瞳孔和虹膜自动分割的统一方法

Grissel Priyanka Mathias , J.H. Gagan , B. Vaibhav Mallya , J.R. Harish Kumar
{"title":"轴上图像中瞳孔和虹膜自动分割的统一方法","authors":"Grissel Priyanka Mathias ,&nbsp;J.H. Gagan ,&nbsp;B. Vaibhav Mallya ,&nbsp;J.R. Harish Kumar","doi":"10.1016/j.cmpbup.2022.100084","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a unified approach for the automatic and accurate segmentation of the pupil and iris from on-axis grayscale eye images. The segmentation of pupil and iris is achieved with Basis-spline-based active contour and circular active contour, respectively. The circular active contour shape template has three free parameters, i.e., a pair of center coordinates and the radius. Basis-spline has <span><math><mi>M</mi></math></span> knots in the shape template and five free parameters i.e., a pair of center coordinates, scaling in the horizontal and vertical directions, and the rotation angle. The segmentation of the region of interest is done by minimization of the local energy function. Optimization of the local energy function of circular and Basis-spline-based active contour is carried out using gradient descent technique and Green’s theorem. To achieve the segmentation of iris boundary, the circular active contour method is combined with our novel occlusion removal algorithm. This helps in removing eyelid and eyelash occlusions for accurate iris segmentation. Automatic localization of the pupil is achieved by the sum of absolute difference method. The proposed algorithm is validated on three publicly available databases: IIT Delhi Iris, CASIA Iris Interval V3, and CASIA Iris Interval V4 databases consisting of 7518 grayscale iris images in total. For the segmentation of pupil from the aforementioned databases, we attained a Dice index of 0.971, 0.950, and 0.960, respectively, and for the segmentation of iris, we attained a Dice index of 0.905, 0.898, and 0.900, respectively. An exploratory data analysis was then done to visualize the distribution of the performance parameters throughout the databases. The segmentation performance of the proposed algorithm is on par with that of the reported state-of-the-art algorithms.</p></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"2 ","pages":"Article 100084"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666990022000350/pdfft?md5=9c96bed223fe43655d35fca5047b373d&pid=1-s2.0-S2666990022000350-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A unified approach for automated segmentation of pupil and iris in on-axis images\",\"authors\":\"Grissel Priyanka Mathias ,&nbsp;J.H. Gagan ,&nbsp;B. Vaibhav Mallya ,&nbsp;J.R. Harish Kumar\",\"doi\":\"10.1016/j.cmpbup.2022.100084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a unified approach for the automatic and accurate segmentation of the pupil and iris from on-axis grayscale eye images. The segmentation of pupil and iris is achieved with Basis-spline-based active contour and circular active contour, respectively. The circular active contour shape template has three free parameters, i.e., a pair of center coordinates and the radius. Basis-spline has <span><math><mi>M</mi></math></span> knots in the shape template and five free parameters i.e., a pair of center coordinates, scaling in the horizontal and vertical directions, and the rotation angle. The segmentation of the region of interest is done by minimization of the local energy function. Optimization of the local energy function of circular and Basis-spline-based active contour is carried out using gradient descent technique and Green’s theorem. To achieve the segmentation of iris boundary, the circular active contour method is combined with our novel occlusion removal algorithm. This helps in removing eyelid and eyelash occlusions for accurate iris segmentation. Automatic localization of the pupil is achieved by the sum of absolute difference method. The proposed algorithm is validated on three publicly available databases: IIT Delhi Iris, CASIA Iris Interval V3, and CASIA Iris Interval V4 databases consisting of 7518 grayscale iris images in total. For the segmentation of pupil from the aforementioned databases, we attained a Dice index of 0.971, 0.950, and 0.960, respectively, and for the segmentation of iris, we attained a Dice index of 0.905, 0.898, and 0.900, respectively. An exploratory data analysis was then done to visualize the distribution of the performance parameters throughout the databases. The segmentation performance of the proposed algorithm is on par with that of the reported state-of-the-art algorithms.</p></div>\",\"PeriodicalId\":72670,\"journal\":{\"name\":\"Computer methods and programs in biomedicine update\",\"volume\":\"2 \",\"pages\":\"Article 100084\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666990022000350/pdfft?md5=9c96bed223fe43655d35fca5047b373d&pid=1-s2.0-S2666990022000350-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666990022000350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990022000350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种统一的方法,用于从轴上灰度眼睛图像中自动准确地分割瞳孔和虹膜。分别采用基于基样条的活动轮廓和圆形活动轮廓实现瞳孔和虹膜的分割。圆形活动轮廓形状模板有三个自由参数,即一对中心坐标和半径。基样条在形状模板中有M个结点和5个自由参数,即一对中心坐标、水平和垂直方向的缩放以及旋转角度。感兴趣区域的分割是通过局部能量函数的最小化来完成的。利用梯度下降法和格林定理对圆形和基样条活动轮廓的局部能量函数进行了优化。为了实现虹膜边界的分割,将圆形活动轮廓法与我们提出的新的去遮挡算法相结合。这有助于去除眼睑和睫毛堵塞,准确分割虹膜。采用绝对差和法实现瞳孔的自动定位。本文算法在IIT Delhi Iris、CASIA Iris Interval V3和CASIA Iris Interval V4三个公开的数据库上进行了验证,共包含7518张灰度虹膜图像。对于瞳孔的分割,我们的Dice指数分别为0.971、0.950和0.960;对于虹膜的分割,我们的Dice指数分别为0.905、0.898和0.900。然后进行探索性数据分析,以可视化整个数据库中性能参数的分布。所提出的算法的分割性能与报道的最先进的算法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified approach for automated segmentation of pupil and iris in on-axis images

We propose a unified approach for the automatic and accurate segmentation of the pupil and iris from on-axis grayscale eye images. The segmentation of pupil and iris is achieved with Basis-spline-based active contour and circular active contour, respectively. The circular active contour shape template has three free parameters, i.e., a pair of center coordinates and the radius. Basis-spline has M knots in the shape template and five free parameters i.e., a pair of center coordinates, scaling in the horizontal and vertical directions, and the rotation angle. The segmentation of the region of interest is done by minimization of the local energy function. Optimization of the local energy function of circular and Basis-spline-based active contour is carried out using gradient descent technique and Green’s theorem. To achieve the segmentation of iris boundary, the circular active contour method is combined with our novel occlusion removal algorithm. This helps in removing eyelid and eyelash occlusions for accurate iris segmentation. Automatic localization of the pupil is achieved by the sum of absolute difference method. The proposed algorithm is validated on three publicly available databases: IIT Delhi Iris, CASIA Iris Interval V3, and CASIA Iris Interval V4 databases consisting of 7518 grayscale iris images in total. For the segmentation of pupil from the aforementioned databases, we attained a Dice index of 0.971, 0.950, and 0.960, respectively, and for the segmentation of iris, we attained a Dice index of 0.905, 0.898, and 0.900, respectively. An exploratory data analysis was then done to visualize the distribution of the performance parameters throughout the databases. The segmentation performance of the proposed algorithm is on par with that of the reported state-of-the-art algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信