M. Pyznar, P. Maszczyk, B. Kiersztyn, K. Dąbrowski, M. Zebrowski, J.-S. Lee, E. Babkiewicz
{"title":"浮游食性鱼幼鱼对微塑料微粒定殖细菌群落分类多样性的影响","authors":"M. Pyznar, P. Maszczyk, B. Kiersztyn, K. Dąbrowski, M. Zebrowski, J.-S. Lee, E. Babkiewicz","doi":"10.1080/24750263.2023.2217200","DOIUrl":null,"url":null,"abstract":"Abstract Very few studies have investigated the influence of fish on the degradation rate of microplastic particles (MPs). It could be expected that their effect might be not only direct, through digestion and passage through the gut, but also indirect, through the alteration of the density and composition of the bacterial community on the surface of MPs. This study aims to test the short-term effects of fish presence altering the water chemical parameters and the abundance and genetic diversity of the aquatic bacteria colonising MPs, which may contribute to their faster degradation. This was tested in a triplicate experiment, with each replicate lasting 10 days in the presence or absence of spherical MPs, polystyrene (Ps) or polyethylene (Pe) and the presence or absence of a perch. The animal was separated from the MPs with a plankton net. We determined the chemical parameters of the water, the number of bacteria in the water and on the MPs’ surface, the taxonomic diversity of bacteria in the water and those present on the MPs using 16S rRNA gene (16S rDNA) sequencing, and the alterations of the MPs’ surface using a scanning electron microscope. The exposure to fish increased the concentration of ammonium, nitrates, and orthophosphates and the number of bacteria in the water, which in turn resulted in an increase in the abundance of bacteria and the number of taxa at the family level on the MPs’ surface. The positive effect of fish exudates on the abundance of bacteria on MPs’ surface was greater in the case of Pe than in Ps. The observed effects did not affect the MPs’ surface in any of the types of plastic during the experiment, but they may play a significant role in MPs decomposition over a longer than applied time period.","PeriodicalId":56040,"journal":{"name":"European Zoological Journal","volume":"90 1","pages":"414 - 430"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of planktivorous fish (juvenile Perca fluviatilis) on the taxonomic diversity of microplastic particles-colonized bacterial community\",\"authors\":\"M. Pyznar, P. Maszczyk, B. Kiersztyn, K. Dąbrowski, M. Zebrowski, J.-S. Lee, E. Babkiewicz\",\"doi\":\"10.1080/24750263.2023.2217200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Very few studies have investigated the influence of fish on the degradation rate of microplastic particles (MPs). It could be expected that their effect might be not only direct, through digestion and passage through the gut, but also indirect, through the alteration of the density and composition of the bacterial community on the surface of MPs. This study aims to test the short-term effects of fish presence altering the water chemical parameters and the abundance and genetic diversity of the aquatic bacteria colonising MPs, which may contribute to their faster degradation. This was tested in a triplicate experiment, with each replicate lasting 10 days in the presence or absence of spherical MPs, polystyrene (Ps) or polyethylene (Pe) and the presence or absence of a perch. The animal was separated from the MPs with a plankton net. We determined the chemical parameters of the water, the number of bacteria in the water and on the MPs’ surface, the taxonomic diversity of bacteria in the water and those present on the MPs using 16S rRNA gene (16S rDNA) sequencing, and the alterations of the MPs’ surface using a scanning electron microscope. The exposure to fish increased the concentration of ammonium, nitrates, and orthophosphates and the number of bacteria in the water, which in turn resulted in an increase in the abundance of bacteria and the number of taxa at the family level on the MPs’ surface. The positive effect of fish exudates on the abundance of bacteria on MPs’ surface was greater in the case of Pe than in Ps. The observed effects did not affect the MPs’ surface in any of the types of plastic during the experiment, but they may play a significant role in MPs decomposition over a longer than applied time period.\",\"PeriodicalId\":56040,\"journal\":{\"name\":\"European Zoological Journal\",\"volume\":\"90 1\",\"pages\":\"414 - 430\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Zoological Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/24750263.2023.2217200\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Zoological Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/24750263.2023.2217200","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
The effect of planktivorous fish (juvenile Perca fluviatilis) on the taxonomic diversity of microplastic particles-colonized bacterial community
Abstract Very few studies have investigated the influence of fish on the degradation rate of microplastic particles (MPs). It could be expected that their effect might be not only direct, through digestion and passage through the gut, but also indirect, through the alteration of the density and composition of the bacterial community on the surface of MPs. This study aims to test the short-term effects of fish presence altering the water chemical parameters and the abundance and genetic diversity of the aquatic bacteria colonising MPs, which may contribute to their faster degradation. This was tested in a triplicate experiment, with each replicate lasting 10 days in the presence or absence of spherical MPs, polystyrene (Ps) or polyethylene (Pe) and the presence or absence of a perch. The animal was separated from the MPs with a plankton net. We determined the chemical parameters of the water, the number of bacteria in the water and on the MPs’ surface, the taxonomic diversity of bacteria in the water and those present on the MPs using 16S rRNA gene (16S rDNA) sequencing, and the alterations of the MPs’ surface using a scanning electron microscope. The exposure to fish increased the concentration of ammonium, nitrates, and orthophosphates and the number of bacteria in the water, which in turn resulted in an increase in the abundance of bacteria and the number of taxa at the family level on the MPs’ surface. The positive effect of fish exudates on the abundance of bacteria on MPs’ surface was greater in the case of Pe than in Ps. The observed effects did not affect the MPs’ surface in any of the types of plastic during the experiment, but they may play a significant role in MPs decomposition over a longer than applied time period.
期刊介绍:
The European Zoological Journal (previously Italian Journal of Zoology) is an open access journal devoted to the study of all aspects of basic, comparative and applied protozoan and animal biology at molecular, cellular, tissue, organ, organismal, population, and community-ecosystem level. Papers covering multiple levels of organization and integrative approaches to study animal form, function, development, ecology, evolution and systematics are welcome. First established in 1930 under the name of Il Bollettino di Zoologia, the journal now has an international focus, reflected through its global editorial board, and wide author and readership.